This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/elasticPlasticNonLinTLSolidFoam/elasticPlasticNonLinTLSolidFoam.C

208 lines
6.3 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Application
elasticPlasticNonLinTLSolidFoam
Description
Finite volume structural solver employing an incremental strain total
Lagrangian approach, with Mises plasticity.
Valid for finite strains, finite displacements and finite rotations.
Author
Philip Cardiff UCD
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "constitutiveModel.H"
#include "solidContactFvPatchVectorField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "createHistory.H"
# include "readDivDSigmaExpMethod.H"
# include "readDivDSigmaNonLinExpMethod.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while(runTime.loop())
{
Info<< "Time: " << runTime.timeName() << nl << endl;
# include "readStressedFoamControls.H"
int iCorr = 0;
scalar initialResidual = 0;
lduMatrix::solverPerformance solverPerf;
scalar relativeResidual = GREAT;
lduMatrix::debug=0;
do
{
DU.storePrevIter();
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaNonLinExp.H"
// incremental form
// linear momentum conservation
// ensuring conservation of total momentum
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho, DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaNonLinExp
//- fvc::div(2*mu*DEpsilonP, "div(sigma)")
- fvc::div(2*muf*( mesh.Sf() & fvc::interpolate(DEpsilonP)) )
);
// if(thirdOrderCorrection)
// {
// # include "calculateThirdOrderDissipativeTerm.H"
// DUEqn -= divThirdOrderTerm;
// }
if(largeStrainOverRelax)
{
// the terms (gradDU & gradU.T()) and (gradU & gradDU.T())
// are linearly dependent of DU and represent initial displacement effect
// which can cause convergence difficulties when treated explicitly
// so we implicitly over-relax with gradU & gradDU here
// which tends to help convergence
// this should improve convergence when gradU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian((2*mu + lambda)*gradU, DU, "laplacian(DDU,DU)")
- fvc::div( (2*mu + lambda)*(gradU&gradDU), "div(sigma)");
//- fvc::div(mesh.magSf()*( (muf+lambdaf) * (n & fvc::interpolate( gradU & gradDU) ) ) );
}
if(nonLinearSemiImplicit)
{
// experimental
// we can treat the nonlinear term (gradDU & gradDU.T()) in a
// semi-implicit over-relaxed manner
// this should improve convergence when gradDU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian((2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)")
- fvc::div( (2*mu + lambda)*(gradDU&gradDU), "div(sigma)");
// try use old gradDU as an OK guess, as gradDU will oscillate
// and might make the convergence worse
// DUEqn -=
// fvm::laplacian((2*mu + lambda)*gradDU.oldTime(), DU, "laplacian(DDU,DU)")
// - fvc::div( (2*mu + lambda)*(gradDU.oldTime()&gradDU), "div(sigma)");
}
solverPerf = DUEqn.solve();
if(iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if(aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
DU.relax();
}
gradDU = fvc::grad(DU);
// correct plasticty term
rheology.correct();
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
if(iCorr % infoFrequency == 0)
{
Info << "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if(aitkenRelax) Info << ", aitken = " << aitkenTheta;
Info << ", iters = " << solverPerf.nIterations() << endl;
}
}
while
(
iCorr++ == 0
||
(//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&&
iCorr < nCorr)
);
Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Relative residual = " << relativeResidual
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
// update total quantities
U += DU;
gradU += gradDU;
epsilon += DEpsilon;
epsilonP += rheology.DEpsilonP();
sigma += DSigma;
rheology.updateYieldStress();
rho = rho/det(I+gradU);
# include "writeFields.H"
# include "writeHistory.H"
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //