/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Application elasticPlasticNonLinTLSolidFoam Description Finite volume structural solver employing an incremental strain total Lagrangian approach, with Mises plasticity. Valid for finite strains, finite displacements and finite rotations. Author Philip Cardiff UCD \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" #include "solidContactFvPatchVectorField.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "createHistory.H" # include "readDivDSigmaExpMethod.H" # include "readDivDSigmaNonLinExpMethod.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while(runTime.loop()) { Info<< "Time: " << runTime.timeName() << nl << endl; # include "readStressedFoamControls.H" int iCorr = 0; scalar initialResidual = 0; lduMatrix::solverPerformance solverPerf; scalar relativeResidual = GREAT; lduMatrix::debug=0; do { DU.storePrevIter(); # include "calculateDivDSigmaExp.H" # include "calculateDivDSigmaNonLinExp.H" // incremental form // linear momentum conservation // ensuring conservation of total momentum fvVectorMatrix DUEqn ( fvm::d2dt2(rho, DU) == fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)") + divDSigmaExp + divDSigmaNonLinExp //- fvc::div(2*mu*DEpsilonP, "div(sigma)") - fvc::div(2*muf*( mesh.Sf() & fvc::interpolate(DEpsilonP)) ) ); // if(thirdOrderCorrection) // { // # include "calculateThirdOrderDissipativeTerm.H" // DUEqn -= divThirdOrderTerm; // } if(largeStrainOverRelax) { // the terms (gradDU & gradU.T()) and (gradU & gradDU.T()) // are linearly dependent of DU and represent initial displacement effect // which can cause convergence difficulties when treated explicitly // so we implicitly over-relax with gradU & gradDU here // which tends to help convergence // this should improve convergence when gradU is large // but maybe not execution time DUEqn -= fvm::laplacian((2*mu + lambda)*gradU, DU, "laplacian(DDU,DU)") - fvc::div( (2*mu + lambda)*(gradU&gradDU), "div(sigma)"); //- fvc::div(mesh.magSf()*( (muf+lambdaf) * (n & fvc::interpolate( gradU & gradDU) ) ) ); } if(nonLinearSemiImplicit) { // experimental // we can treat the nonlinear term (gradDU & gradDU.T()) in a // semi-implicit over-relaxed manner // this should improve convergence when gradDU is large // but maybe not execution time DUEqn -= fvm::laplacian((2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)") - fvc::div( (2*mu + lambda)*(gradDU&gradDU), "div(sigma)"); // try use old gradDU as an OK guess, as gradDU will oscillate // and might make the convergence worse // DUEqn -= // fvm::laplacian((2*mu + lambda)*gradDU.oldTime(), DU, "laplacian(DDU,DU)") // - fvc::div( (2*mu + lambda)*(gradDU.oldTime()&gradDU), "div(sigma)"); } solverPerf = DUEqn.solve(); if(iCorr == 0) { initialResidual = solverPerf.initialResidual(); } if(aitkenRelax) { # include "aitkenRelaxation.H" } else { DU.relax(); } gradDU = fvc::grad(DU); // correct plasticty term rheology.correct(); # include "calculateDEpsilonDSigma.H" # include "calculateRelativeResidual.H" if(iCorr % infoFrequency == 0) { Info << "\tTime " << runTime.value() << ", Corrector " << iCorr << ", Solving for " << DU.name() << " using " << solverPerf.solverName() << ", res = " << solverPerf.initialResidual() << ", rel res = " << relativeResidual; if(aitkenRelax) Info << ", aitken = " << aitkenTheta; Info << ", iters = " << solverPerf.nIterations() << endl; } } while ( iCorr++ == 0 || (//solverPerf.initialResidual() > convergenceTolerance relativeResidual > convergenceTolerance && iCorr < nCorr) ); Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", Relative residual = " << relativeResidual << ", No outer iterations " << iCorr << nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << endl; // update total quantities U += DU; gradU += gradDU; epsilon += DEpsilon; epsilonP += rheology.DEpsilonP(); sigma += DSigma; rheology.updateYieldStress(); rho = rho/det(I+gradU); # include "writeFields.H" # include "writeHistory.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s\n\n" << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //