209 lines
6.3 KiB
C
209 lines
6.3 KiB
C
|
/*---------------------------------------------------------------------------*\
|
||
|
========= |
|
||
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||
|
\\ / O peration |
|
||
|
\\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak
|
||
|
\\/ M anipulation |
|
||
|
-------------------------------------------------------------------------------
|
||
|
License
|
||
|
This file is part of OpenFOAM.
|
||
|
|
||
|
OpenFOAM is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License as published by the
|
||
|
Free Software Foundation; either version 2 of the License, or (at your
|
||
|
option) any later version.
|
||
|
|
||
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with OpenFOAM; if not, write to the Free Software Foundation,
|
||
|
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
|
||
|
Application
|
||
|
elasticPlasticNonLinTLSolidFoam
|
||
|
|
||
|
Description
|
||
|
Finite volume structural solver employing an incremental strain total
|
||
|
Lagrangian approach, with Mises plasticity.
|
||
|
|
||
|
Valid for finite strains, finite displacements and finite rotations.
|
||
|
|
||
|
Author
|
||
|
Philip Cardiff UCD
|
||
|
|
||
|
\*---------------------------------------------------------------------------*/
|
||
|
|
||
|
#include "fvCFD.H"
|
||
|
#include "constitutiveModel.H"
|
||
|
#include "solidContactFvPatchVectorField.H"
|
||
|
|
||
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
# include "setRootCase.H"
|
||
|
# include "createTime.H"
|
||
|
# include "createMesh.H"
|
||
|
# include "createFields.H"
|
||
|
# include "createHistory.H"
|
||
|
# include "readDivDSigmaExpMethod.H"
|
||
|
# include "readDivDSigmaNonLinExpMethod.H"
|
||
|
|
||
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||
|
|
||
|
Info<< "\nStarting time loop\n" << endl;
|
||
|
|
||
|
while(runTime.loop())
|
||
|
{
|
||
|
Info<< "Time: " << runTime.timeName() << nl << endl;
|
||
|
|
||
|
# include "readStressedFoamControls.H"
|
||
|
|
||
|
int iCorr = 0;
|
||
|
scalar initialResidual = 0;
|
||
|
lduMatrix::solverPerformance solverPerf;
|
||
|
scalar relativeResidual = GREAT;
|
||
|
lduMatrix::debug=0;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
DU.storePrevIter();
|
||
|
|
||
|
# include "calculateDivDSigmaExp.H"
|
||
|
# include "calculateDivDSigmaNonLinExp.H"
|
||
|
|
||
|
// incremental form
|
||
|
// linear momentum conservation
|
||
|
// ensuring conservation of total momentum
|
||
|
fvVectorMatrix DUEqn
|
||
|
(
|
||
|
fvm::d2dt2(rho, DU)
|
||
|
==
|
||
|
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
|
||
|
+ divDSigmaExp
|
||
|
+ divDSigmaNonLinExp
|
||
|
//- fvc::div(2*mu*DEpsilonP, "div(sigma)")
|
||
|
- fvc::div(2*muf*( mesh.Sf() & fvc::interpolate(DEpsilonP)) )
|
||
|
);
|
||
|
|
||
|
// if(thirdOrderCorrection)
|
||
|
// {
|
||
|
// # include "calculateThirdOrderDissipativeTerm.H"
|
||
|
// DUEqn -= divThirdOrderTerm;
|
||
|
// }
|
||
|
|
||
|
if(largeStrainOverRelax)
|
||
|
{
|
||
|
// the terms (gradDU & gradU.T()) and (gradU & gradDU.T())
|
||
|
// are linearly dependent of DU and represent initial displacement effect
|
||
|
// which can cause convergence difficulties when treated explicitly
|
||
|
// so we implicitly over-relax with gradU & gradDU here
|
||
|
// which tends to help convergence
|
||
|
// this should improve convergence when gradU is large
|
||
|
// but maybe not execution time
|
||
|
DUEqn -=
|
||
|
fvm::laplacian((2*mu + lambda)*gradU, DU, "laplacian(DDU,DU)")
|
||
|
- fvc::div( (2*mu + lambda)*(gradU&gradDU), "div(sigma)");
|
||
|
//- fvc::div(mesh.magSf()*( (muf+lambdaf) * (n & fvc::interpolate( gradU & gradDU) ) ) );
|
||
|
}
|
||
|
|
||
|
if(nonLinearSemiImplicit)
|
||
|
{
|
||
|
// experimental
|
||
|
// we can treat the nonlinear term (gradDU & gradDU.T()) in a
|
||
|
// semi-implicit over-relaxed manner
|
||
|
// this should improve convergence when gradDU is large
|
||
|
// but maybe not execution time
|
||
|
DUEqn -=
|
||
|
fvm::laplacian((2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)")
|
||
|
- fvc::div( (2*mu + lambda)*(gradDU&gradDU), "div(sigma)");
|
||
|
// try use old gradDU as an OK guess, as gradDU will oscillate
|
||
|
// and might make the convergence worse
|
||
|
// DUEqn -=
|
||
|
// fvm::laplacian((2*mu + lambda)*gradDU.oldTime(), DU, "laplacian(DDU,DU)")
|
||
|
// - fvc::div( (2*mu + lambda)*(gradDU.oldTime()&gradDU), "div(sigma)");
|
||
|
}
|
||
|
|
||
|
solverPerf = DUEqn.solve();
|
||
|
|
||
|
if(iCorr == 0)
|
||
|
{
|
||
|
initialResidual = solverPerf.initialResidual();
|
||
|
}
|
||
|
|
||
|
if(aitkenRelax)
|
||
|
{
|
||
|
# include "aitkenRelaxation.H"
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
DU.relax();
|
||
|
}
|
||
|
|
||
|
gradDU = fvc::grad(DU);
|
||
|
|
||
|
// correct plasticty term
|
||
|
rheology.correct();
|
||
|
|
||
|
# include "calculateDEpsilonDSigma.H"
|
||
|
# include "calculateRelativeResidual.H"
|
||
|
|
||
|
if(iCorr % infoFrequency == 0)
|
||
|
{
|
||
|
Info << "\tTime " << runTime.value()
|
||
|
<< ", Corrector " << iCorr
|
||
|
<< ", Solving for " << DU.name()
|
||
|
<< " using " << solverPerf.solverName()
|
||
|
<< ", res = " << solverPerf.initialResidual()
|
||
|
<< ", rel res = " << relativeResidual;
|
||
|
if(aitkenRelax) Info << ", aitken = " << aitkenTheta;
|
||
|
Info << ", iters = " << solverPerf.nIterations() << endl;
|
||
|
}
|
||
|
}
|
||
|
while
|
||
|
(
|
||
|
iCorr++ == 0
|
||
|
||
|
||
|
(//solverPerf.initialResidual() > convergenceTolerance
|
||
|
relativeResidual > convergenceTolerance
|
||
|
&&
|
||
|
iCorr < nCorr)
|
||
|
);
|
||
|
|
||
|
Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name()
|
||
|
<< ", Initial residual = " << initialResidual
|
||
|
<< ", Final residual = " << solverPerf.initialResidual()
|
||
|
<< ", Relative residual = " << relativeResidual
|
||
|
<< ", No outer iterations " << iCorr
|
||
|
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||
|
<< endl;
|
||
|
|
||
|
// update total quantities
|
||
|
U += DU;
|
||
|
gradU += gradDU;
|
||
|
epsilon += DEpsilon;
|
||
|
epsilonP += rheology.DEpsilonP();
|
||
|
sigma += DSigma;
|
||
|
rheology.updateYieldStress();
|
||
|
rho = rho/det(I+gradU);
|
||
|
|
||
|
# include "writeFields.H"
|
||
|
# include "writeHistory.H"
|
||
|
|
||
|
Info<< "ExecutionTime = "
|
||
|
<< runTime.elapsedCpuTime()
|
||
|
<< " s\n\n" << endl;
|
||
|
}
|
||
|
|
||
|
Info<< "End\n" << endl;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
// ************************************************************************* //
|