* Simplified the spack.util.gpg implementation
All the classes defined in this Python module,
which were previously used to construct singleton
instances, have been removed in favor of four
global variables. These variables are initialized
lazily, like before.
The API of the module has been unchanged for the
most part. A few tests have been modified to use
the new global names.
1. add version 2021.05.15.
2. add patch to build old revs with gcc 11.x, version 2021.15.05
already has patch integrated, fixes#23667.
3. add variant +debug to build unoptimized, debug version.
4. add variant +viewer to include hpcviewer and add viewer path to
hpctoolkit module.
5. add dependency on memkind to workaround a glibc problem found on
some Cray platforms.
For me the buildcache force overwrite option does not work. It tries to
delete a file, but errors with a key error, apparently because the
leading / has to be removed.
* util.tty.log: read up to 100 lines if ready
Rework to read up to 100 lines from the captured stdin as long as data
is ready to be read immediately. Adds a helper function to poll with
`select` for ready data. This showed a roughly 5-10x perf improvement
for high-rate writes through the logger with relatively short lines.
* util.tty.log: Defer flushes to end of ready reads
Rather than flush per line, flush per set of reads. Since this is a
non-blocking loop, the total perceived wait is short.
* util.tty.log: only scan each line once, usually
Rather than always find all control characters then substitute them all,
use `subn` to count the number of control characters replaced. Only if
control characters exist find out what they are. This could be made
truly single pass with sub with a function, but it's a more intrusive
change and this got 99%ish of the performance improvement (roughly
another 2x in some cases).
* util.tty.log: remove check for `readable`
Python < 3 does not support a readable check on streams, should not be
necessary here since we control the only use and it's explicitly a
stream to be read.
* py-lxml: add 4.6.3
Also add missing libxml2 and libxslt versions dependencies [1]
[1] https://github.com/lxml/lxml/blob/lxml-4.6.3/INSTALL.txt
* Update var/spack/repos/builtin/packages/py-lxml/package.py
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* py-lxml: remove cython dependency again
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* e4s ci: enable full e4s
* add llvm-amdgpu to list of specs needing an xlarge tagged runner
* comment out qt and qwt because of intermittent build failures
* remove +rocm specs because rocblas job consistently fails due to infrastructure
* qt: skip multimedia when ~opengl
On 5.9 on macOS the multimedia option causes build errors; on other
platforms and versions it should probably be assumed inoperative anyway.
* qt: Omit flags when disabling multimedia
```
ERROR: Unknown command line option '-no-pulseaudio'.
```
* Work around another qt@5.9 error
* qt: Fix build error on darwin
This PR allows users to `--export`, `--export-secret`, or both to export GPG keys
from Spack. The docs are updated that include a warning that this usually does not
need to be done.
This addresses an issue brought up in slack, and also represented in #14721.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Currently, module configurations are inconsistent because modulefiles are generated with the configs for the active environment, but are shared among all environments (and spack outside any environment).
This PR fixes that by allowing Spack environments (or other spack config scopes) to define additional sets of modules to generate. Each set of modules can enable either lmod or tcl modules, and contains all of the previously available module configuration. The user defines the name of each module set -- the set configured in Spack by default is named "default", and is the one returned by module manipulation commands in the absence of user intervention.
As part of this change, the module roots configuration moved from the config section to inside each module configuration.
Additionally, it adds a feature that the modulefiles for an environment can be configured to be relative to an environment view rather than the underlying prefix. This will not be enabled by default, as it should only be enabled within an environment and for non-default views constructed with separate projections per-spec.
* New Package:py-ucsf-pyem
* Dep additions, eun env deletion
* extraction step change
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
* New Package: py-retry-decorator
* pypi link correction
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
### Overview
The goal of this PR is to make gitlab pipeline builds (especially build failures) more reproducible outside of the pipeline environment. The two key changes here which aim to improve reproducibility are:
1. Produce a `spack.lock` during pipeline generation which is passed to child jobs via artifacts. This concretized environment is used both by generated child jobs as well as uploaded as an artifact to be used when reproducing the build locally.
2. In the `spack ci rebuild` command, if a spec needs to be rebuilt from source, do this by generating and running an `install.sh` shell script which is then also uploaded as a job artifact to be run during local reproduction.
To make it easier to take advantage of improved build reproducibility, this PR also adds a new subcommand, `spack ci reproduce-build`, which, given a url to job artifacts:
- fetches and unzips the job artifacts to a local directory
- looks for the generated pipeline yaml and parses it to find details about the job to reproduce
- attempts to provide a copy of the same version of spack used in the ci build
- if the ci build used a docker image, the command prints a `docker run` command you can run to get an interactive shell for reproducing the build
#### Some highlights
One consequence of this change will be much smaller pipeline yaml files. By encoding the concrete environment in a `spack.lock` and passing to child jobs via artifacts, we will no longer need to encode the concrete root of each spec and write it into the job variables, greatly reducing the size of the generated pipeline yaml.
Additionally `spack ci rebuild` output (stdout/stderr) is no longer internally redirected to a log file, so job output will appear directly in the gitlab job trace. With debug logging turned on, this often results in log files getting truncated because they exceed the maximum amount of log output gitlab allows. If this is a problem, you still have the option to `tee` command output to a file in the within the artifacts directory, as now each generated job exposes a `user_data` directory as an artifact, which you can fill with whatever you want in your custom job scripts.
There are some changes to be aware of in how pipelines should be set up after this PR:
#### Pipeline generation
Because the pipeline generation job now writes a `spack.lock` artifact to be consumed by generated downstream jobs, `spack ci generate` takes a new option `--artifacts-root`, inside which it creates a `concrete_env` directory to place the lockfile. This artifacts root directory is also where the `user_data` directory will live, in case you want to generate any custom artifacts. If you do not provide `--artifacts-root`, the default is for it to create a `jobs_scratch_dir` within your `CI_PROJECT_DIR` (a gitlab predefined environment variable) or whatever is your current working directory if that variable isn't set. Here's the diff of the PR testing `.gitlab-ci.yml` taking advantage of the new option:
```
$ git diff develop..pipelines-reproducible-builds share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
diff --git a/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml b/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
index 579d7b56f3..0247803a30 100644
--- a/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
+++ b/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
@@ -28,10 +28,11 @@ default:
- cd share/spack/gitlab/cloud_pipelines/stacks/${SPACK_CI_STACK_NAME}
- spack env activate --without-view .
- spack ci generate --check-index-only
+ --artifacts-root "${CI_PROJECT_DIR}/jobs_scratch_dir"
--output-file "${CI_PROJECT_DIR}/jobs_scratch_dir/cloud-ci-pipeline.yml"
artifacts:
paths:
- - "${CI_PROJECT_DIR}/jobs_scratch_dir/cloud-ci-pipeline.yml"
+ - "${CI_PROJECT_DIR}/jobs_scratch_dir"
tags: ["spack", "public", "medium", "x86_64"]
interruptible: true
```
Notice how we replaced the specific pointer to the generated pipeline file with its containing folder, the same folder we passed as `--artifacts-root`. This way anything in that directory (the generated pipeline yaml, as well as the concrete environment directory containing the `spack.lock`) will be uploaded as an artifact and available to the downstream jobs.
#### Rebuild jobs
Rebuild jobs now must activate the concrete environment created by `spack ci generate` and provided via artifacts. When the pipeline is generated, a directory called `concrete_environment` is created within the artifacts root directory, and this is where the `spack.lock` file is written to be passed to the generated rebuild jobs. The artifacts root directory can be specified using the `--artifacts-root` option to `spack ci generate`, otherwise, it is assumed to be `$CI_PROJECT_DIR`. The directory containing the concrete environment files (`spack.yaml` and `spack.lock`) is then passed to generated child jobs via the `SPACK_CONCRETE_ENV_DIR` variable in the generated pipeline yaml file.
When you don't provide custom `script` sections in your `mappings` within the `gitlab-ci` section of your `spack.yaml`, the default behavior of rebuild jobs is now to change into `SPACK_CONCRETE_ENV_DIR` and activate that environment. If you do provide custom rebuild scripts in your `spack.yaml`, be aware those scripts should do the same thing: assume `SPACK_CONCRETE_ENV_DIR` contains the concretized environment to activate. No other changes to existing custom rebuild scripts should be required as a result of this PR.
As mentioned above, one key change made in this PR is the generation of the `install.sh` script by the rebuild jobs, as that same script is both run by the CI rebuild job as well as exported as an artifact to aid in subsequent attempts to reproduce the build outside of CI. The generated `install.sh` script contains only a single `spack install` command with arguments computed by `spack ci rebuild`. If the install fails, the job trace in gitlab will contain instructions on how to reproduce the build locally:
```
To reproduce this build locally, run:
spack ci reproduce-build https://gitlab.next.spack.io/api/v4/projects/7/jobs/240607/artifacts [--working-dir <dir>]
If this project does not have public pipelines, you will need to first:
export GITLAB_PRIVATE_TOKEN=<generated_token>
... then follow the printed instructions.
```
When run locally, the `spack ci reproduce-build` command shown above will download and process the job artifacts from gitlab, then print out instructions you can copy-paste to run a local reproducer of the CI job.
This PR includes a few other changes to the way pipelines work, see the documentation on pipelines for more details.
This PR erelies on
~- [ ] #23194 to be able to refer to uninstalled specs by DAG hash~
EDIT: that is going to take longer to come to fruition, so for now, we will continue to install specs represented by a concrete `spec.yaml` file on disk.
- [x] #22657 to support install a single spec already present in the active, concrete environment