520 lines
12 KiB
C
520 lines
12 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | foam-extend: Open Source CFD
|
|
\\ / O peration | Version: 3.2
|
|
\\ / A nd | Web: http://www.foam-extend.org
|
|
\\/ M anipulation | For copyright notice see file Copyright
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of foam-extend.
|
|
|
|
foam-extend is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
foam-extend is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Description
|
|
Utility to refine cells in multiple directions.
|
|
|
|
Either supply -all option to refine all cells (3D refinement for 3D
|
|
cases; 2D for 2D cases) or reads a refineMeshDict with
|
|
- cellSet to refine
|
|
- directions to refine
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "polyMesh.H"
|
|
#include "Time.H"
|
|
#include "undoableMeshCutter.H"
|
|
#include "hexCellLooper.H"
|
|
#include "cellSet.H"
|
|
#include "twoDPointCorrector.H"
|
|
#include "directions.H"
|
|
#include "OFstream.H"
|
|
#include "multiDirRefinement.H"
|
|
#include "labelIOList.H"
|
|
#include "wedgePolyPatch.H"
|
|
#include "plane.H"
|
|
|
|
using namespace Foam;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
|
|
// Max cos angle for edges to be considered aligned with axis.
|
|
static const scalar edgeTol = 1E-3;
|
|
|
|
|
|
// Calculate some edge statistics on mesh.
|
|
void printEdgeStats(const primitiveMesh& mesh)
|
|
{
|
|
label nX = 0;
|
|
label nY = 0;
|
|
label nZ = 0;
|
|
|
|
scalar minX = GREAT;
|
|
scalar maxX = -GREAT;
|
|
vector x(1, 0, 0);
|
|
|
|
scalar minY = GREAT;
|
|
scalar maxY = -GREAT;
|
|
vector y(0, 1, 0);
|
|
|
|
scalar minZ = GREAT;
|
|
scalar maxZ = -GREAT;
|
|
vector z(0, 0, 1);
|
|
|
|
scalar minOther = GREAT;
|
|
scalar maxOther = -GREAT;
|
|
|
|
const edgeList& edges = mesh.edges();
|
|
|
|
forAll (edges, edgeI)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
|
|
vector eVec(e.vec(mesh.points()));
|
|
|
|
scalar eMag = mag(eVec);
|
|
|
|
eVec /= eMag;
|
|
|
|
if (mag(eVec & x) > 1 - edgeTol)
|
|
{
|
|
minX = min(minX, eMag);
|
|
maxX = max(maxX, eMag);
|
|
nX++;
|
|
}
|
|
else if (mag(eVec & y) > 1 - edgeTol)
|
|
{
|
|
minY = min(minY, eMag);
|
|
maxY = max(maxY, eMag);
|
|
nY++;
|
|
}
|
|
else if (mag(eVec & z) > 1 - edgeTol)
|
|
{
|
|
minZ = min(minZ, eMag);
|
|
maxZ = max(maxZ, eMag);
|
|
nZ++;
|
|
}
|
|
else
|
|
{
|
|
minOther = min(minOther, eMag);
|
|
maxOther = max(maxOther, eMag);
|
|
}
|
|
}
|
|
|
|
Pout<< "Mesh edge statistics:" << endl
|
|
<< " x aligned : number:" << nX << "\tminLen:" << minX
|
|
<< "\tmaxLen:" << maxX << endl
|
|
<< " y aligned : number:" << nY << "\tminLen:" << minY
|
|
<< "\tmaxLen:" << maxY << endl
|
|
<< " z aligned : number:" << nZ << "\tminLen:" << minZ
|
|
<< "\tmaxLen:" << maxZ << endl
|
|
<< " other : number:" << mesh.nEdges() - nX - nY - nZ
|
|
<< "\tminLen:" << minOther
|
|
<< "\tmaxLen:" << maxOther << endl << endl;
|
|
}
|
|
|
|
|
|
// Return index of coordinate axis.
|
|
label axis(const vector& normal)
|
|
{
|
|
label axisIndex = -1;
|
|
|
|
if (mag(normal & point(1, 0, 0)) > (1 - edgeTol))
|
|
{
|
|
axisIndex = 0;
|
|
}
|
|
else if (mag(normal & point(0, 1, 0)) > (1 - edgeTol))
|
|
{
|
|
axisIndex = 1;
|
|
}
|
|
else if (mag(normal & point(0, 0, 1)) > (1 - edgeTol))
|
|
{
|
|
axisIndex = 2;
|
|
}
|
|
|
|
return axisIndex;
|
|
}
|
|
|
|
|
|
//- Returns -1 or cartesian coordinate component (0=x, 1=y, 2=z) of normal
|
|
// in case of 2D mesh
|
|
label twoDNess(const polyMesh& mesh)
|
|
{
|
|
const pointField& ctrs = mesh.cellCentres();
|
|
|
|
if (ctrs.size() < 2)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
|
|
//
|
|
// 1. All cell centres on single plane aligned with x, y or z
|
|
//
|
|
|
|
// Determine 3 points to base plane on.
|
|
vector vec10 = ctrs[1] - ctrs[0];
|
|
vec10 /= mag(vec10);
|
|
|
|
label otherCellI = -1;
|
|
|
|
for (label cellI = 2; cellI < ctrs.size(); cellI++)
|
|
{
|
|
vector vec(ctrs[cellI] - ctrs[0]);
|
|
vec /= mag(vec);
|
|
|
|
if (mag(vec & vec10) < 0.9)
|
|
{
|
|
// ctrs[cellI] not in line with n
|
|
otherCellI = cellI;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (otherCellI == -1)
|
|
{
|
|
// Cannot find cell to make decent angle with cell0-cell1 vector.
|
|
// Note: what to do here? All cells (almost) in one line. Maybe 1D case?
|
|
return -1;
|
|
}
|
|
|
|
plane cellPlane(ctrs[0], ctrs[1], ctrs[otherCellI]);
|
|
|
|
|
|
forAll (ctrs, cellI)
|
|
{
|
|
const labelList& cEdges = mesh.cellEdges()[cellI];
|
|
|
|
scalar minLen = GREAT;
|
|
|
|
forAll (cEdges, i)
|
|
{
|
|
minLen = min(minLen, mesh.edges()[cEdges[i]].mag(mesh.points()));
|
|
}
|
|
|
|
if (cellPlane.distance(ctrs[cellI]) > 1E-6*minLen)
|
|
{
|
|
// Centres not in plane
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
label axisIndex = axis(cellPlane.normal());
|
|
|
|
if (axisIndex == -1)
|
|
{
|
|
return axisIndex;
|
|
}
|
|
|
|
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
|
|
|
|
//
|
|
// 2. No edges without points on boundary
|
|
//
|
|
|
|
// Mark boundary points
|
|
boolList boundaryPoint(mesh.allPoints().size(), false);
|
|
|
|
forAll (patches, patchI)
|
|
{
|
|
const polyPatch& patch = patches[patchI];
|
|
|
|
forAll (patch, patchFaceI)
|
|
{
|
|
const face& f = patch[patchFaceI];
|
|
|
|
forAll (f, fp)
|
|
{
|
|
boundaryPoint[f[fp]] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
const edgeList& edges = mesh.edges();
|
|
|
|
forAll (edges, edgeI)
|
|
{
|
|
const edge& e = edges[edgeI];
|
|
|
|
if (!boundaryPoint[e.start()] && !boundaryPoint[e.end()])
|
|
{
|
|
// Edge has no point on boundary.
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
|
|
// 3. For all non-wedge patches: all faces either perp or aligned with
|
|
// cell-plane normal. (wedge patches already checked upon construction)
|
|
|
|
forAll (patches, patchI)
|
|
{
|
|
const polyPatch& patch = patches[patchI];
|
|
|
|
if (!isA<wedgePolyPatch>(patch))
|
|
{
|
|
const vectorField& n = patch.faceAreas();
|
|
|
|
scalarField cosAngle = mag(n/mag(n) & cellPlane.normal());
|
|
|
|
if (mag(min(cosAngle) - max(cosAngle)) > 1E-6)
|
|
{
|
|
// cosAngle should be either ~1 over all faces (2D front and
|
|
// back) or ~0 (all other patches perp to 2D)
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return axisIndex;
|
|
}
|
|
|
|
|
|
// Main program:
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
Foam::argList::validOptions.insert("dict", "");
|
|
Foam::argList::validOptions.insert("overwrite", "");
|
|
|
|
# include "setRootCase.H"
|
|
# include "createTime.H"
|
|
runTime.functionObjects().off();
|
|
# include "createPolyMesh.H"
|
|
const word oldInstance = mesh.pointsInstance();
|
|
|
|
printEdgeStats(mesh);
|
|
|
|
|
|
//
|
|
// Read/construct control dictionary
|
|
//
|
|
|
|
bool readDict = args.optionFound("dict");
|
|
bool overwrite = args.optionFound("overwrite");
|
|
|
|
// List of cells to refine
|
|
labelList refCells;
|
|
|
|
// Dictionary to control refinement
|
|
dictionary refineDict;
|
|
|
|
if (readDict)
|
|
{
|
|
Info<< "Refining according to refineMeshDict" << nl << endl;
|
|
|
|
refineDict =
|
|
IOdictionary
|
|
(
|
|
IOobject
|
|
(
|
|
"refineMeshDict",
|
|
runTime.system(),
|
|
mesh,
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE
|
|
)
|
|
);
|
|
|
|
word setName(refineDict.lookup("set"));
|
|
|
|
cellSet cells(mesh, setName);
|
|
|
|
Pout<< "Read " << cells.size() << " cells from cellSet "
|
|
<< cells.instance()/cells.local()/cells.name()
|
|
<< endl << endl;
|
|
|
|
refCells = cells.toc();
|
|
}
|
|
else
|
|
{
|
|
Info<< "Refining all cells" << nl << endl;
|
|
|
|
// Select all cells
|
|
refCells.setSize(mesh.nCells());
|
|
|
|
const cellList& c = mesh.cells();
|
|
|
|
forAll (c, cellI)
|
|
{
|
|
refCells[cellI] = cellI;
|
|
}
|
|
|
|
|
|
// Set refinement directions based on 2D/3D
|
|
label axisIndex = twoDNess(mesh);
|
|
|
|
if (axisIndex == -1)
|
|
{
|
|
Info<< "3D case; refining all directions" << nl << endl;
|
|
|
|
wordList directions(3);
|
|
directions[0] = "tan1";
|
|
directions[1] = "tan2";
|
|
directions[2] = "normal";
|
|
refineDict.add("directions", directions);
|
|
|
|
// Use hex cutter
|
|
refineDict.add("useHexTopology", "true");
|
|
}
|
|
else
|
|
{
|
|
wordList directions(2);
|
|
|
|
if (axisIndex == 0)
|
|
{
|
|
Info<< "2D case; refining in directions y,z\n" << endl;
|
|
directions[0] = "tan2";
|
|
directions[1] = "normal";
|
|
}
|
|
else if (axisIndex == 1)
|
|
{
|
|
Info<< "2D case; refining in directions x,z\n" << endl;
|
|
directions[0] = "tan1";
|
|
directions[1] = "normal";
|
|
}
|
|
else
|
|
{
|
|
Info<< "2D case; refining in directions x,y\n" << endl;
|
|
directions[0] = "tan1";
|
|
directions[1] = "tan2";
|
|
}
|
|
|
|
refineDict.add("directions", directions);
|
|
|
|
// Use standard cutter
|
|
refineDict.add("useHexTopology", "false");
|
|
}
|
|
|
|
refineDict.add("coordinateSystem", "global");
|
|
|
|
dictionary coeffsDict;
|
|
coeffsDict.add("tan1", vector(1, 0, 0));
|
|
coeffsDict.add("tan2", vector(0, 1, 0));
|
|
refineDict.add("globalCoeffs", coeffsDict);
|
|
|
|
refineDict.add("geometricCut", "false");
|
|
refineDict.add("writeMesh", "false");
|
|
}
|
|
|
|
|
|
string oldTimeName(runTime.timeName());
|
|
|
|
if (!overwrite)
|
|
{
|
|
runTime++;
|
|
}
|
|
|
|
|
|
// Multi-directional refinement (does multiple iterations)
|
|
multiDirRefinement multiRef(mesh, refCells, refineDict);
|
|
|
|
|
|
// Write resulting mesh
|
|
if (overwrite)
|
|
{
|
|
mesh.setInstance(oldInstance);
|
|
}
|
|
mesh.write();
|
|
|
|
|
|
// Get list of cell splits.
|
|
// (is for every cell in old mesh the cells they have been split into)
|
|
const labelListList& oldToNew = multiRef.addedCells();
|
|
|
|
|
|
// Create cellSet with added cells for easy inspection
|
|
cellSet newCells(mesh, "refinedCells", refCells.size());
|
|
|
|
forAll (oldToNew, oldCellI)
|
|
{
|
|
const labelList& added = oldToNew[oldCellI];
|
|
|
|
forAll (added, i)
|
|
{
|
|
newCells.insert(added[i]);
|
|
}
|
|
}
|
|
|
|
Pout<< "Writing refined cells (" << newCells.size() << ") to cellSet "
|
|
<< newCells.instance()/newCells.local()/newCells.name()
|
|
<< endl << endl;
|
|
|
|
newCells.write();
|
|
|
|
|
|
|
|
|
|
//
|
|
// Invert cell split to construct map from new to old
|
|
//
|
|
|
|
labelIOList newToOld
|
|
(
|
|
IOobject
|
|
(
|
|
"cellMap",
|
|
runTime.timeName(),
|
|
polyMesh::meshSubDir,
|
|
mesh,
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
mesh.nCells()
|
|
);
|
|
newToOld.note() =
|
|
"From cells in mesh at "
|
|
+ runTime.timeName()
|
|
+ " to cells in mesh at "
|
|
+ oldTimeName;
|
|
|
|
forAll (oldToNew, oldCellI)
|
|
{
|
|
const labelList& added = oldToNew[oldCellI];
|
|
|
|
if (added.size())
|
|
{
|
|
forAll (added, i)
|
|
{
|
|
newToOld[added[i]] = oldCellI;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Unrefined cell
|
|
newToOld[oldCellI] = oldCellI;
|
|
}
|
|
}
|
|
|
|
Info<< "Writing map from new to old cell to "
|
|
<< newToOld.objectPath() << nl << endl;
|
|
|
|
newToOld.write();
|
|
|
|
// Some statistics.
|
|
|
|
printEdgeStats(mesh);
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|