DLB and AMR fixes and additional developments. Vuko Vukcevic

This commit is contained in:
Hrvoje Jasak 2019-07-11 11:51:08 +01:00
commit c862d507ae
10 changed files with 569 additions and 174 deletions

View file

@ -158,9 +158,17 @@ fvFieldDecomposer::decomposeField
const label patchStart = field.mesh().boundaryMesh()[patchI].start();
forAll (p, i)
// Bugfix
// Special patches soch as overset and immersed boundary have
// their faces and values in a separate list; the list of
// values does not correspond to faces. Skip such patches.
// HJ, 4/Jul/2019
if (p.size() == field.mesh().boundaryMesh()[patchI].size())
{
allFaceField[patchStart + i] = p[i];
forAll (p, i)
{
allFaceField[patchStart + i] = p[i];
}
}
}

View file

@ -1728,8 +1728,337 @@ Foam::processorMeshesReconstructor::reconstructMesh(const Time& db)
// due to the presence of old/new patches
globalMesh.addFvPatches(reconPatches, false);
// TODO: point, face and cell zones
// Recombine cell, face and point zones.
// Note 1: all zones have to be present on same processors in the same
// order. This is the result of the decomposition. See
// domainDecomposition::processorMesh member function
// Note 2: the code below could be written in a generic way by using a
// template helper member function, but it's not straightforward since we
// don't have a list of ZoneMeshes for all processors
// Get index for the first valid mesh
const label fvmID = firstValidMesh();
// First pass: count maximum number of cells, faces and points in zones
labelList nCellsPerZone(meshes_[fvmID].cellZones().size(), 0);
labelList nFacesPerZone(meshes_[fvmID].faceZones().size(), 0);
labelList nPointsPerZone(meshes_[fvmID].pointZones().size(), 0);
forAll (meshes_, procI)
{
if (meshes_.set(procI))
{
// Grab the current mesh
const polyMesh& curMesh = meshes_[procI];
// PART 1: Cell zones. Scope for clarity and safety
{
const cellZoneMesh& cz = curMesh.cellZones();
forAll (cz, zoneI)
{
// Count number of cells in the zone
nCellsPerZone[zoneI] += cz[zoneI].size();
}
}
// PART 2: Face zones. Scope for clarity and safety
{
const faceZoneMesh& fz = curMesh.faceZones();
forAll (fz, zoneI)
{
// Count number of faces in the zone
nFacesPerZone[zoneI] += fz[zoneI].size();
}
}
// PART 3: Point zones. Scope for clarity and safety
{
const pointZoneMesh& pz = curMesh.pointZones();
forAll (pz, zoneI)
{
// Count number of points in the zone
nPointsPerZone[zoneI] += pz[zoneI].size();
}
}
} // End if processor mesh set
} // End for all processor meshes
// Second pass: redistribute cells, faces and points in zones
// Create lists that contain labels of all cells/faces/points in a given
// zone coming from different processor meshes. Index is the zoneID, which
// is the same for all processor bits, while the other list collects all the
// cells/faces/points in a given zone.
labelListList reconCellZones(nCellsPerZone.size());
labelListList reconFaceZones(nFacesPerZone.size());
List<boolList> reconFaceZoneFlips(nFacesPerZone.size());
labelListList reconPointZones(nPointsPerZone.size());
// Size the lists appropriatelly for each zone
forAll (reconCellZones, zoneI)
{
reconCellZones[zoneI].setSize(nCellsPerZone[zoneI], -1);
}
forAll (reconFaceZones, zoneI)
{
reconFaceZones[zoneI].setSize(nFacesPerZone[zoneI], -1);
reconFaceZoneFlips[zoneI].setSize(nFacesPerZone[zoneI], false);
}
forAll (reconPointZones, zoneI)
{
reconPointZones[zoneI].setSize(nPointsPerZone[zoneI], -1);
}
// Reset counting lists for indexing during list item assignement and for
// collecting the final number of faces/points in face/pointZones (since
// these can be actually fewer if e.g. a processor face becomes an internal
// face).
nCellsPerZone = 0;
nFacesPerZone = 0;
nPointsPerZone = 0;
// Loop through all the meshes and collect cells/faces/points in the zones
forAll (meshes_, procI)
{
if (meshes_.set(procI))
{
// Grab the current mesh
const polyMesh& curMesh = meshes_[procI];
// PART 1: Cell zones. Scope for clarity and safety
{
const cellZoneMesh& cz = curMesh.cellZones();
// Get old-to-new cell addressing for this mesh
const labelList& curCellProcAddr = cellProcAddressing_[procI];
forAll (cz, zoneI)
{
// Get "new" zone cell index
label& nCells = nCellsPerZone[zoneI];
// Reference to the new recon zone
labelList& zoneReconCells = reconCellZones[zoneI];
// Get all the cells in this zone
const labelList& zoneCells = cz[zoneI];
// Loop through the cells
forAll (zoneCells, i)
{
// Get cell index in the processor mesh
const label& oldCellI = zoneCells[i];
// Get cell index in the new mesh
const label& newCellI = curCellProcAddr[oldCellI];
// Redundancy check: check if the the newCellI is
// -1. This should not happen because cells have perfect
// 1-to-1 mapping
if (newCellI != -1)
{
// Insert the cell in the new recon zone and
// increment the counter
zoneReconCells[nCells++] = newCellI;
}
else
{
FatalErrorIn
(
"autoPtr<fvMesh>"
"\n processorMeshesReconstructor::"
"reconstructMesh(const Time& db)"
) << "Found unmapped cell while reconstructing"
<< " cell zones."
<< nl
<< "Cell from processor: " << procI << nl
<< "Cell zone name: " << cz[zoneI].name() << nl
<< "Index in the cell zone: " << i << nl
<< "Old cell index: " << oldCellI << nl
<< "New cell index: " << newCellI
<< abort(FatalError);
}
} // End for all cells in the zone
} // End for all cell zones
} // End scope for cell zone handling
// PART 2: Face zones. Scope for clarity and safety
{
const faceZoneMesh& fz = curMesh.faceZones();
// Get old-to-new face addressing for this mesh
const labelList& curFaceProcAddr = faceProcAddressing_[procI];
forAll (fz, zoneI)
{
// Get "new" zone face index
label& nFaces = nFacesPerZone[zoneI];
// Reference to the new recon zone and flips in the zone
labelList& zoneReconFaces = reconFaceZones[zoneI];
boolList& zoneReconFaceFlips = reconFaceZoneFlips[zoneI];
// Get all the faces in this zone and also their flips
const labelList& zoneFaces = fz[zoneI];
const boolList& zoneFlipMap = fz[zoneI].flipMap();
// Loop through the faces
forAll (zoneFaces, i)
{
// Get the face index in the processor mesh
const label& oldFaceI = zoneFaces[i];
// Get the face index in the new, reconstructed mesh
const label& newFaceI = curFaceProcAddr[oldFaceI];
// Check if the face is mapped.
// Note:
// 1. Need to decrement by 1 because of the face turning
// 2. No need to handle negative new indices coming from
// slave processor because we'd end up with
// duplicate entries (two faces on two processors
// merged into a single one)
if (newFaceI > 0)
{
// This is a face that's been correctly
// mapped, insert the face in the new zone
zoneReconFaces[nFaces] = newFaceI - 1;
// Also store the flip map of the face. We don't
// need to check whether the flip map has been
// preserved because we only get the combined faces
// that are inserted from master side.
zoneReconFaceFlips[nFaces] = zoneFlipMap[i];
// Increment the number of faces for this zone
++nFaces;
}
} // End for all faces in the zone
} // End for all face zones
} // End scope for face zone handling
// PART 3: Point zones. Scope for clarity and safety
{
const pointZoneMesh& fz = curMesh.pointZones();
// Get old-to-new point addressing for this mesh
const labelList& curPointProcAddr = pointProcAddressing_[procI];
forAll (fz, zoneI)
{
// Get "new" zone point index
label& nPoints = nPointsPerZone[zoneI];
// Reference to the new recon zone
labelList& zoneReconPoints = reconPointZones[zoneI];
// Get all the points in this zone
const labelList& zonePoints = fz[zoneI];
// Loop through the points
forAll (zonePoints, i)
{
// Get point index in the processor mesh
const label& oldPointI = zonePoints[i];
// Get point index in the new mesh
const label& newPointI = curPointProcAddr[oldPointI];
// Check if the point is mapped
if (newPointI != -1)
{
// Insert the point in the new recon zone and
// increment the counter
zoneReconPoints[nPoints++] = newPointI;
}
} // End for all points in the zone
} // End for all point zones
} // End scope for point zone handling
} // End if the processor mesh is set
} // End for all processor meshes
// We need to resize the face and point zones to number of inserted
// faces/points because not all faces and points need to be
// inserted. There's nothing to do for cell zones because these are always
// mapped uniquely one-to-one
forAll (reconFaceZones, zoneI)
{
reconFaceZones[zoneI].setSize(nFacesPerZone[zoneI]);
reconFaceZoneFlips[zoneI].setSize(nFacesPerZone[zoneI]);
}
forAll (reconPointZones, zoneI)
{
reconPointZones[zoneI].setSize(nPointsPerZone[zoneI]);
}
// Now we have all the zones as ordinary lists without possible duplicate
// faces and points due to merging of processor boundaries. Create zone
// meshes
// PART 1: Cell zones
List<cellZone*> reconCz(reconCellZones.size());
// Loop through all the cell zones and create them
forAll (reconCz, zoneI)
{
// Notes:
// 1. Grab the name from the respective zone in the first valid mesh
// 2. Transfer the list of cell IDs, invalidating reconCellZones[zoneI]
reconCz[zoneI] = new cellZone
(
meshes_[fvmID].cellZones()[zoneI].name(),
reconCellZones[zoneI].xfer(),
zoneI,
globalMesh.cellZones()
);
}
// PART 2: Face zones
List<faceZone*> reconFz(reconFaceZones.size());
// Loop through all the face zones and create them
forAll (reconFz, zoneI)
{
// Notes:
// 1. Grab the name from the respective zone in the first valid mesh
// 2. Transfer the list of face IDs, invalidating reconFaceZones[zoneI]
reconFz[zoneI] = new faceZone
(
meshes_[fvmID].faceZones()[zoneI].name(),
reconFaceZones[zoneI].xfer(),
reconFaceZoneFlips[zoneI].xfer(),
zoneI,
globalMesh.faceZones()
);
}
// PART 3: Point zones
List<pointZone*> reconPz(reconPointZones.size());
// Loop through all the point zones and create them
forAll (reconPz, zoneI)
{
// Notes:
// 1. Grab the name from the respective zone in the first valid mesh
// 2. Transfer the list of point IDs, invalidating reconPointZones[zoneI]
reconPz[zoneI] = new pointZone
(
meshes_[fvmID].pointZones()[zoneI].name(),
reconPointZones[zoneI].xfer(),
zoneI,
globalMesh.pointZones()
);
}
// Add the zones into the mesh
globalMesh.addZones(reconPz, reconFz, reconCz);
// All done, return the global mesh pointer
return globalMeshPtr;
}

View file

@ -2055,15 +2055,6 @@ void Foam::polyhedralRefinement::setCellsToRefine
}
}
// Remove all cells that would exceed the maximum refinement level
forAll (refineCell, cellI)
{
if (refineCell[cellI] && (cellLevel_[cellI] + 1 > maxRefinementLevel_))
{
refineCell[cellI] = false;
}
}
// Make sure that the refinement is face consistent (2:1 consistency) and
// point consistent (4:1 consistency) if necessary

View file

@ -2614,15 +2614,6 @@ void Foam::prismatic2DRefinement::setCellsToRefine
}
}
// Remove all cells that exceed the maximum refinement level
forAll (refineCell, cellI)
{
if (refineCell[cellI] && (cellLevel_[cellI] + 1 > maxRefinementLevel_))
{
refineCell[cellI] = false;
}
}
// Make sure that the refinement is face consistent (2:1 consistency) and
// point consistent (4:1 consistency) if necessary

View file

@ -1333,20 +1333,6 @@ bool Foam::refinement::changeTopology() const
void Foam::refinement::setRefinement(polyTopoChange& ref) const
{
// Make sure that the point levels are updated across coupled patches before
// setting refinement and unrefinement. Note: not sure why the sync is not
// performed correctly if I do it in updateMesh. This is a temporary
// solution, need to investigate in detail, but I assume something is not
// updated yet in that case. VV, 31/Jan/2018.
syncTools::syncPointList
(
mesh_,
pointLevel_,
maxEqOp<label>(),
label(0), // Null value
true // Apply separation for parallel cyclics
);
// Set refinement and unrefinement
this->setRefinementInstruction(ref);
this->setUnrefinementInstruction(ref);

View file

@ -117,89 +117,105 @@ Foam::dynamicPolyRefinementFvMesh::dynamicPolyRefinementFvMesh
// protectedInitialRefinement)
refinementSelectionPtr_()
{
// Only create topo modifiers if they haven't been read in
// HJ, 16/Oct/2018
if (topoChanger_.empty())
// Check whether we read polyMeshModifiers from
// constant/polyMesh/meshModifiers file in the base class
if (!topoChanger_.empty())
{
// Only one topo changer engine
topoChanger_.setSize(1);
// Already initialized, warn the user that we'll neglect it
WarningIn
(
"dynamicPolyRefinementFvMesh::dynamicPolyRefinementFvMesh"
"\n("
"\n const IOobject& io"
"\n const word subDictName"
"\n)"
) << "Using controls from constant/dynamicMeshDict instead of"
<< " constant/polyMesh/meshModifiers."
<< nl
<< "To supress this warning, delete meshModifiers file."
<< endl;
// Get number of valid geometric dimensions
const label nGeometricDirs = this->nGeometricD();
switch(nGeometricDirs)
{
case 3:
// Add the polyhedralRefinement engine for
// 3D isotropic refinement
Info<< "3D case detected. "
<< "Adding polyhedralRefinement topology modifier" << endl;
topoChanger_.set
(
0,
new polyhedralRefinement
(
"polyhedralRefinement",
refinementDict_,
0,
topoChanger_
)
);
break;
case 2:
// Add the prismatic2DRefinement engine for
// 2D isotropic refinement
Info<< "2D case detected. "
<< "Adding prismatic2DRefinement topology modifier" << endl;
topoChanger_.set
(
0,
new prismatic2DRefinement
(
"prismatic2DRefinement",
refinementDict_,
0,
topoChanger_
)
);
break;
case 1:
FatalErrorIn
(
"dynamicPolyRefinementFvMesh::dynamicPolyRefinementFvMesh"
"\n("
"\n const IOobject& io,"
"\n const word subDictName"
"\n)"
) << "1D case detected. No valid refinement strategy is"
<< " available for 1D cases."
<< abort(FatalError);
break;
default:
FatalErrorIn
(
"dynamicPolyRefinementFvMesh::dynamicPolyRefinementFvMesh"
"\n("
"\n const IOobject& io,"
"\n const word subDictName"
"\n)"
) << "Invalid number of geometric meshes detected: "
<< nGeometricDirs
<< nl << "It appears that this mesh is neither 1D, 2D or 3D."
<< nl << " the mesh."
<< abort(FatalError);
}
// Write mesh and modifiers
topoChanger_.writeOpt() = IOobject::AUTO_WRITE;
topoChanger_.write();
write();
// Clear the list
topoChanger_.clear();
}
// Only one topo changer engine
topoChanger_.setSize(1);
// Get number of valid geometric dimensions
const label nGeometricDirs = this->nGeometricD();
switch(nGeometricDirs)
{
case 3:
// Add the polyhedralRefinement engine for
// 3D isotropic refinement
Info<< "3D case detected. "
<< "Adding polyhedralRefinement topology modifier" << endl;
topoChanger_.set
(
0,
new polyhedralRefinement
(
"polyhedralRefinement",
refinementDict_,
0,
topoChanger_
)
);
break;
case 2:
// Add the prismatic2DRefinement engine for
// 2D isotropic refinement
Info<< "2D case detected. "
<< "Adding prismatic2DRefinement topology modifier" << endl;
topoChanger_.set
(
0,
new prismatic2DRefinement
(
"prismatic2DRefinement",
refinementDict_,
0,
topoChanger_
)
);
break;
case 1:
FatalErrorIn
(
"dynamicPolyRefinementFvMesh::dynamicPolyRefinementFvMesh"
"\n("
"\n const IOobject& io,"
"\n const word subDictName"
"\n)"
) << "1D case detected. No valid refinement strategy is"
<< " available for 1D cases."
<< abort(FatalError);
break;
default:
FatalErrorIn
(
"dynamicPolyRefinementFvMesh::dynamicPolyRefinementFvMesh"
"\n("
"\n const IOobject& io,"
"\n const word subDictName"
"\n)"
) << "Invalid number of geometric meshes detected: "
<< nGeometricDirs
<< nl << "It appears that this mesh is neither 1D, 2D or 3D."
<< abort(FatalError);
}
// Write mesh and modifiers
topoChanger_.writeOpt() = IOobject::AUTO_WRITE;
topoChanger_.write();
write();
// Initialize refinement selection algorithm after modifiers
refinementSelectionPtr_ = refinementSelection::New(*this, refinementDict_);
}
@ -271,13 +287,13 @@ bool Foam::dynamicPolyRefinementFvMesh::update()
(
refinementSelectionPtr_->refinementCellCandidates()()
);
Pout<< "Selected " << refCandidates.size()
Info<< "Selected " << refCandidates.size()
<< " refinement candidates."
<< endl;
}
else
{
Pout<< "Skipping refinement for this time-step..." << endl;
Info<< "Skipping refinement for this time-step..." << endl;
}
// Set cells to refine. Note: refinement needs to make sure that face
@ -297,13 +313,13 @@ bool Foam::dynamicPolyRefinementFvMesh::update()
(
refinementSelectionPtr_->unrefinementPointCandidates()()
);
Pout<< "Selected " << unrefCandidates.size()
Info<< "Selected " << unrefCandidates.size()
<< " unrefinement candidates."
<< endl;
}
else
{
Pout<< "Skipping unrefinement for this time-step..." << endl;
Info<< "Skipping unrefinement for this time-step..." << endl;
}
// Set split points to unrefine around.
@ -344,13 +360,13 @@ bool Foam::dynamicPolyRefinementFvMesh::update()
// some topo changes
if (sizeCellMap)
{
Pout<< "Successfully performed polyhedral refinement. "
Info<< "Successfully performed polyhedral refinement. "
<< "Changed from " << nOldCells << " to " << sizeCellMap
<< " cells." << endl;
}
else
{
Pout<< "Refinement/unrefinement not performed in this time step "
Info<< "Refinement/unrefinement not performed in this time step "
<< "since no cells were selected." << endl;
}
@ -362,7 +378,9 @@ bool Foam::dynamicPolyRefinementFvMesh::update()
// per time step
curTimeIndex_ = time().timeIndex();
}
Pout<< "No refinement/unrefinement" << endl;
Info<< "No refinement/unrefinement" << endl;
// No refinement/unrefinement at this time step. Return false
return false;
}

View file

@ -291,7 +291,7 @@ bool Foam::topoChangerFvMesh::loadBalance(const dictionary& decompDict)
true // Create passive processor patches
);
fvMesh& procMesh = procMeshPtr();
procMesh.write();
// Create a field decomposer
fvFieldDecomposer fieldDecomposer
(
@ -304,7 +304,11 @@ bool Foam::topoChangerFvMesh::loadBalance(const dictionary& decompDict)
if (procI != Pstream::myProcNo())
{
Pout<< "Send mesh and fields to processor " << procI << endl;
if (debug)
{
Pout<< "Send mesh and fields to processor " << procI
<< endl;
}
OPstream toProc
(
@ -449,8 +453,6 @@ bool Foam::topoChangerFvMesh::loadBalance(const dictionary& decompDict)
}
}
sleep(2);
// Collect pieces of mesh and fields from other processors
for (label procI = 0; procI < meshDecomp.nProcs(); procI++)
{
@ -459,7 +461,10 @@ bool Foam::topoChangerFvMesh::loadBalance(const dictionary& decompDict)
// Check if there is a mesh to send
if (migratedCells[procI][Pstream::myProcNo()] > 0)
{
Pout<< "Receive mesh and fields from " << procI << endl;
if (debug)
{
Pout<< "Receive mesh and fields from " << procI << endl;
}
// Note: communication can be optimised. HJ, 27/Feb/2018
IPstream fromProc
@ -839,6 +844,9 @@ bool Foam::topoChangerFvMesh::loadBalance(const dictionary& decompDict)
oldPatchNMeshPoints // oldPatchNMeshPoints
);
// Remove point, face and cell zones from the original mesh
removeZones();
// Reset fvMesh and patches
resetFvPrimitives
(
@ -852,6 +860,55 @@ bool Foam::topoChangerFvMesh::loadBalance(const dictionary& decompDict)
true // Valid boundary
);
// Get pointers to cell/face/point zones from reconstructed mesh and "link"
// them to the new mesh
// Cell zones
const cellZoneMesh& reconCellZones = reconMesh.cellZones();
List<cellZone*> czs(reconCellZones.size());
forAll (czs, zoneI)
{
czs[zoneI] = new cellZone
(
reconCellZones[zoneI].name(),
reconCellZones[zoneI],
zoneI,
this->cellZones()
);
}
// Face zones
const faceZoneMesh& reconFaceZones = reconMesh.faceZones();
List<faceZone*> fzs(reconFaceZones.size());
forAll (fzs, zoneI)
{
fzs[zoneI] = new faceZone
(
reconFaceZones[zoneI].name(),
reconFaceZones[zoneI],
reconFaceZones[zoneI].flipMap(),
zoneI,
this->faceZones()
);
}
// Point zones
const pointZoneMesh& reconPointZones = reconMesh.pointZones();
List<pointZone*> pzs(reconPointZones.size());
forAll (pzs, zoneI)
{
pzs[zoneI] = new pointZone
(
reconPointZones[zoneI].name(),
reconPointZones[zoneI],
zoneI,
this->pointZones()
);
}
// Add the zones to the mesh
addZones(pzs, fzs, czs);
// Create field reconstructor
fvFieldReconstructor fieldReconstructor
(

View file

@ -43,6 +43,20 @@ defineTypeNameAndDebug(Foam::polyMesh, 0);
Foam::word Foam::polyMesh::defaultRegion = "region0";
Foam::word Foam::polyMesh::meshSubDir = "polyMesh";
const Foam::debug::tolerancesSwitch
Foam::polyMesh::emptyDirTol_
(
"emptyDirectionTolerance",
1e-10
);
const Foam::debug::tolerancesSwitch
Foam::polyMesh::wedgeDirTol_
(
"wedgeDirectionTolerance",
1e-10
);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
@ -93,20 +107,27 @@ void Foam::polyMesh::calcDirections() const
globalEmptyDirVec /= mag(globalEmptyDirVec);
// Check if all processors see the same 2-D from empty patches
if (mag(globalEmptyDirVec - emptyDirVec) > SMALL)
if (mag(globalEmptyDirVec - emptyDirVec) > emptyDirTol_())
{
FatalErrorIn
(
"void polyMesh::calcDirections() const"
) << "Some processors detect different empty (2-D) "
<< "directions. Probably using empty patches on a "
<< "bad parallel decomposition." << nl
<< "Please check your geometry and empty patches"
<< "bad parallel decomposition." << nl << nl
<< "Global empty direction vector: " << globalEmptyDirVec << nl
<< "Local empty direction vector: " << emptyDirVec << nl
<< "If global and local empty direction vectors are different"
<< " to a round-off error, try increasing the"
<< " emptyDirectionTolerance in controlDict::Tolerances" << nl
<< "The emptyDirectionTolerance for this run is: "
<< emptyDirTol_() << nl << nl
<< "Otherwise please check your geometry and empty patches."
<< abort(FatalError);
}
}
if (mag(emptyDirVec) > SMALL)
if (mag(emptyDirVec) > emptyDirTol_())
{
for (direction cmpt = 0; cmpt < vector::nComponents; cmpt++)
{
@ -139,7 +160,7 @@ void Foam::polyMesh::calcDirections() const
globalWedgeDirVec /= mag(globalWedgeDirVec);
// Check if all processors see the same 2-D from wedge patches
if (mag(globalWedgeDirVec - wedgeDirVec) > SMALL)
if (mag(globalWedgeDirVec - wedgeDirVec) > wedgeDirTol_())
{
FatalErrorIn
(
@ -147,12 +168,20 @@ void Foam::polyMesh::calcDirections() const
) << "Some processors detect different wedge (2-D) "
<< "directions. Probably using wedge patches on a "
<< "bad parallel decomposition." << nl
<< "Global wedge direction vector: " << globalWedgeDirVec << nl
<< "Local wedge direction vector: " << wedgeDirVec << nl
<< "If global and local wedge direction vectors are different"
<< " to a round-off error, try increasing the"
<< " wedgeDirectionTolerance in controlDict::Tolerances" << nl
<< "The wedgeDirectionTolerance for this run is: "
<< wedgeDirTol_() << nl << nl
<< "Otherwise please check your geometry and empty patches."
<< "Please check your geometry and wedge patches"
<< abort(FatalError);
}
}
if (mag(wedgeDirVec) > SMALL)
if (mag(wedgeDirVec) > wedgeDirTol_())
{
for (direction cmpt = 0; cmpt < vector::nComponents; cmpt++)
{

View file

@ -235,11 +235,23 @@ public:
//- Runtime type information
TypeName("polyMesh");
//- Return the default region name
static word defaultRegion;
//- Return the mesh sub-directory name (usually "polyMesh")
static word meshSubDir;
//- Static mesh data
//- Return the default region name
static word defaultRegion;
//- Return the mesh sub-directory name (usually "polyMesh")
static word meshSubDir;
//- Static data to control empty and wedge directions
//- Empty direction tolerance
static const debug::tolerancesSwitch emptyDirTol_;
//- Wedge direction tolerance
static const debug::tolerancesSwitch wedgeDirTol_;
// Constructors

View file

@ -73,53 +73,27 @@ calcMeshData() const
// number of faces in the patch
Map<label> markedPoints(4*this->size());
// Important:
// ~~~~~~~~~~
// In <= 1.5 the meshPoints would be in increasing order but this gives
// problems in processor point synchronisation where we have to find out
// how the opposite side would have allocated points.
// Note:
// ~~~~~
// This is all garbage. All -ext versions will preserve strong ordering
// HJ, 17/Aug/2010
//- 1.5 code:
// If the point is used, set the mark to 1
// Note: foam-extend was relying on strong ordering of meshPoints on
// processor patches which causes point ordering errors when doing Dynamic
// Load Balancing. Because of this ordering error on two sides of processor
// boundaries, point fields ended up having wrong values near processor
// boundaries. Revert to unsorted version. VV, 11/July/2019.
dynamicLabelList meshPoints(2*this->size());
forAll(*this, facei)
{
const Face& curPoints = this->operator[](facei);
forAll(curPoints, pointi)
{
markedPoints.insert(curPoints[pointi], -1);
if (markedPoints.insert(curPoints[pointi], meshPoints.size()))
{
meshPoints.append(curPoints[pointi]);
}
}
}
// Create the storage and store the meshPoints. Mesh points are
// the ones marked by the usage loop above
meshPointsPtr_ = new labelList(markedPoints.toc());
labelList& pointPatch = *meshPointsPtr_;
// Sort the list to preserve compatibility with the old ordering
sort(pointPatch);
// For every point in map give it its label in mesh points
forAll(pointPatch, pointi)
{
markedPoints.find(pointPatch[pointi])() = pointi;
}
forAll(*this, faceI)
{
const Face& curPoints = this->operator[](faceI);
forAll (curPoints, pointI)
{
markedPoints.insert(curPoints[pointI], -1);
}
}
// Transfer to straight list (reuses storage)
meshPointsPtr_ = new labelList(meshPoints, true);
// Create local faces. Note that we start off from copy of original face
// list (even though vertices are overwritten below). This is done so