Updates to fvcReconstruct and Overset include files. Vuko Vukcevic

This commit is contained in:
Hrvoje Jasak 2019-07-11 08:54:58 +01:00
commit 21de351fe2
5 changed files with 76 additions and 33 deletions

View file

@ -25,7 +25,8 @@ Description
Extrude mesh from existing patch (by default outwards facing normals;
optional flips faces) or from patch read from file.
Note: Merges close points so be careful.
Note: Merges close points so be careful. This can be controlled with the
optional mergeTolerance parameter (1e-4) by default.
Type of extrusion prescribed by run-time selectable model.
@ -181,7 +182,8 @@ int main(int argc, char *argv[])
const vector span = bb.span();
// Read merge tolerance
const scalar mergeTolerance = readScalar(dict.lookup("mergeTolerance"));
const scalar mergeTolerance =
dict.lookupOrDefault<scalar>("mergeTolerance", 1e-4);
const scalar mergeDim = mergeTolerance*bb.minDim();
Info<< "Mesh bounding box : " << bb << nl

View file

@ -459,7 +459,7 @@ void Foam::domainDecomposition::decomposeMesh(const bool filterEmptyPatches)
// cell with multiple faces, we need to collect neighbour cell
// indices on the other side and possibly swap the order of
// adding faces. The same "swapping" of insertion order needs to
// happend on the slave side, but now we sort on the remote
// happen on the slave side, but now we sort on the remote
// (master) data and not on the local (slave) data as we do for
// master processor. VV, 16/Feb/2019.
@ -588,7 +588,7 @@ void Foam::domainDecomposition::decomposeMesh(const bool filterEmptyPatches)
// above, owner and neighbour proc are the same. In
// order to avoid using cellToProc list for slave
// processor (where ownCellI is actually found on the
// other side), use curNbrPtc with patchFace indes
// other side), use curNbrPtc with patchFace index
const label& ownerProc = curNbrPtc[patchFaceI];
// Add the patch face into the list in the correct

View file

@ -76,34 +76,66 @@ reconstruct
GeometricField<GradType, fvPatchField, volMesh>& reconField =
treconField();
// Note:
// 1) Reconstruction is only available in cell centres: there is no need
// Notes regarding boundary:
// 1. Reconstruction is only available in cell centres: there is no need
// to invert the tensor on the boundary
// 2) For boundaries, the only reconstructed data is the flux times
// normal. Based on this guess, boundary conditions can adjust
// patch values
// HJ, 12/Aug/2011
// 2. For boundaries, the only reconstructed data is the flux times
// normal. Based on this guess, boundary conditions can adjust
// patch values. HJ, 12/Aug/2011
GeometricField<GradType, fvPatchField, volMesh> fluxTimesNormal =
surfaceSum((mesh.Sf()/mesh.magSf())*ssf);
// Notes regarding procedure:
// 1. hinv inverse must be used to stabilise the inverse on bad meshes
// but it gives strange failures because it unnecessarily avoids
// performing ordinary inverse for meshes with reasonably sized
// determinant (e.g. if SfSf/magSf is small). HJ, 19/Aug/2015
// 2. hinv has been stabilised now. HJ, 22/Mar/2019
// 3. But we still need to make sure that the determinant is not extremely
// small, which may happen for extremely small meshes. We avoid this
// issue by dividing the reconstruction equation with magSf^2 (instead of
// magSf), which basically makes the dyadic tensor that we need to invert
// dimensionless. VV, 13/Jun/2019
// Note: hinv inverse must be used to stabilise the inverse on bad meshes
// but it gives strange failures. Fixed hinv. HJ, 22/Mar/2019
// HJ, 19/Aug/2015
// Temporarily reverting hinv: Vuko Vukcevic, 6/Jun/2019
// Here's a short derivation in a Latex--like notation, where:
// - Sf is the surface area vector
// - uf is the face velocity factor (or field to be reconstructed)
// - Ff is the face flux
// - magSf is the magnitude of the surface area vector
// - uP is the velocity field in the cell centre
// - G is the surface area dyadic tensor
// - Fn is the vector representing surface sum of directional fluxes
// - \dprod is a dot product
// 1. Sf \dprod uf = Ff
// Multiply Eq (1) with Sf/magSf^2
// 2. \frac{Sf Sf}{magSf^2} \dprod uf = \frac{Sf Ff}{magSf^2}
// Sum Eq (2) over all the faces
// 3. \sum_f(\frac{Sf Sf}{magSf^2} \dprod uf) = \sum_f(\frac{Sf Ff}{magSf^2})
// Assume first order extrapolation of uf, e.g. uP = uf
// 4. \sum_f(\frac{Sf Sf}{magSf^2}) \dprod uP) = \sum_f(\frac{Sf Ff}{magSf^2})
// Use shorthand notation
// 5. G \dprod uP = Fn
// 6. uP = G^-1 \dprod Fn
// Fn -> fluxTimesNormal
// G -> G
// Calculate sum of the directional fluxes
const surfaceScalarField magSfSqr = sqr(mesh.magSf());
const GeometricField<GradType, fvPatchField, volMesh> fluxTimesNormal =
surfaceSum((mesh.Sf()/magSfSqr)*ssf);
// Calculate the G tensor
const volSymmTensorField G = surfaceSum(sqr(mesh.Sf())/magSfSqr);
// Finally calculate the reconstructed field using hinv for stabilisation on
// really bad fvMesh bits (uses ordinary inverse most of the time, see
// tensor.C)
reconField.internalField() =
(
// hinv
inv
(
surfaceSum(sqr(mesh.Sf())/mesh.magSf())().internalField()
)
& fluxTimesNormal.internalField()
);
hinv(G.internalField()) & fluxTimesNormal.internalField();
// Boundary value update
reconField.boundaryField() = fluxTimesNormal.boundaryField();
treconField().correctBoundaryConditions();
reconField.correctBoundaryConditions();
return treconField;
}

View file

@ -38,21 +38,28 @@ scalar maxAlphaCo
scalar alphaCoNum = 0.0;
scalar meanAlphaCoNum = 0.0;
surfaceScalarField alpha1f =
const surfaceScalarField alpha1f =
fvc::interpolate(min(max(alpha1, scalar(0)), scalar(1)));
const dimensionedScalar alphaOffset("alphaOffset", dimless, dAlpha);
const dimensionedScalar alphaOffset
(
"alphaOffset",
dimless,
runTime.controlDict().lookupOrDefault("dAlpha", 0.01)
);
if (mesh.nInternalFaces())
{
surfaceScalarField magAlphaPhi
const oversetMesh& om = oversetMesh::New(mesh);
const surfaceScalarField magAlphaPhi
(
pos(alpha1f - alphaOffset)*
pos(scalar(1) - alphaOffset - alpha1f)*
mag(faceOversetMask*phi)
mag(om.sGamma()*phi)
);
surfaceScalarField SfUfbyDelta =
const surfaceScalarField SfUfbyDelta =
mesh.surfaceInterpolation::deltaCoeffs()*magAlphaPhi;
const scalar deltaT = runTime.deltaT().value();

View file

@ -36,9 +36,11 @@ scalar velMag = 0.0;
if (mesh.nInternalFaces())
{
surfaceScalarField magPhi = mag(faceOversetMask*phi);
const oversetMesh& om = oversetMesh::New(mesh);
surfaceScalarField SfUfbyDelta =
const surfaceScalarField magPhi = mag(om.sGamma()*phi);
const surfaceScalarField SfUfbyDelta =
mesh.surfaceInterpolation::deltaCoeffs()*magPhi;
CoNum = max(SfUfbyDelta/mesh.magSf())