Reconstruction of cell/face/point zones during DLB

Wrote a missing piece of code that maps cell/face/point zones from different
mesh bits to the new, reconstructed mesh when doing Dynamic Load Balancing.
This commit is contained in:
Vuko Vukcevic 2019-06-19 16:32:10 +02:00
parent 57d3af8960
commit 49769f0397
2 changed files with 368 additions and 19 deletions

View file

@ -1728,35 +1728,332 @@ Foam::processorMeshesReconstructor::reconstructMesh(const Time& db)
// due to the presence of old/new patches // due to the presence of old/new patches
globalMesh.addFvPatches(reconPatches, false); globalMesh.addFvPatches(reconPatches, false);
// TODO: point, face and cell zone // Recombine cell, face and point zones.
// Temporarily issue an error if we have point, face and cell zones // Note 1: all zones have to be present on same processors in the same
// order. This is the result of the decomposition. See
// domainDecomposition::processorMesh member function
// Note 2: the code below could be written in a generic way by using a
// template helper member function, but it's not straightforward since we
// don't have a list of ZoneMeshes for all processors
// Get index for the first valid mesh
const label fvmID = firstValidMesh();
// First pass: count maximum number of cells, faces and points in zones
labelList nCellsPerZone(meshes_[fvmID].cellZones().size(), 0);
labelList nFacesPerZone(meshes_[fvmID].faceZones().size(), 0);
labelList nPointsPerZone(meshes_[fvmID].pointZones().size(), 0);
forAll (meshes_, procI) forAll (meshes_, procI)
{ {
if (meshes_.set(procI)) if (meshes_.set(procI))
{ {
// Grab the current mesh
const polyMesh& curMesh = meshes_[procI]; const polyMesh& curMesh = meshes_[procI];
if // PART 1: Cell zones. Scope for clarity and safety
(
!curMesh.cellZones().empty()
|| !curMesh.faceZones().empty()
|| !curMesh.pointZones().empty()
)
{ {
FatalErrorIn const cellZoneMesh& cz = curMesh.cellZones();
(
"autoPtr<fvMesh> processorMeshesReconstructor::" forAll (cz, zoneI)
"reconstructMesh(const Time& db)" {
) << "Reconstructing cellZones, faceZones and pointZones is" // Count number of cells in the zone
<< " currently not supported." nCellsPerZone[zoneI] += cz[zoneI].size();
<< nl }
<< "In order to get past this error, you can delete all the"
<< " zones in your mesh."
<< abort(FatalError);
} }
}
// PART 2: Face zones. Scope for clarity and safety
{
const faceZoneMesh& fz = curMesh.faceZones();
forAll (fz, zoneI)
{
// Count number of faces in the zone
nFacesPerZone[zoneI] += fz[zoneI].size();
}
}
// PART 3: Point zones. Scope for clarity and safety
{
const pointZoneMesh& pz = curMesh.pointZones();
forAll (pz, zoneI)
{
// Count number of points in the zone
nPointsPerZone[zoneI] += pz[zoneI].size();
}
}
} // End if processor mesh set
} // End for all processor meshes
// Second pass: redistribute cells, faces and points in zones
// Create lists that contain labels of all cells/faces/points in a given
// zone coming from different processor meshes. Index is the zoneID, which
// is the same for all processor bits, while the other list collects all the
// cells/faces/points in a given zone.
labelListList reconCellZones(nCellsPerZone.size());
labelListList reconFaceZones(nFacesPerZone.size());
List<boolList> reconFaceZoneFlips(nFacesPerZone.size());
labelListList reconPointZones(nPointsPerZone.size());
// Size the lists appropriatelly for each zone
forAll (reconCellZones, zoneI)
{
reconCellZones[zoneI].setSize(nCellsPerZone[zoneI], -1);
}
forAll (reconFaceZones, zoneI)
{
reconFaceZones[zoneI].setSize(nFacesPerZone[zoneI], -1);
reconFaceZoneFlips[zoneI].setSize(nFacesPerZone[zoneI], false);
}
forAll (reconPointZones, zoneI)
{
reconPointZones[zoneI].setSize(nPointsPerZone[zoneI], -1);
} }
// Reset counting lists for indexing during list item assignement and for
// collecting the final number of faces/points in face/pointZones (since
// these can be actually fewer if e.g. a processor face becomes an internal
// face).
nCellsPerZone = 0;
nFacesPerZone = 0;
nPointsPerZone = 0;
// Loop through all the meshes and collect cells/faces/points in the zones
forAll (meshes_, procI)
{
if (meshes_.set(procI))
{
// Grab the current mesh
const polyMesh& curMesh = meshes_[procI];
// PART 1: Cell zones. Scope for clarity and safety
{
const cellZoneMesh& cz = curMesh.cellZones();
// Get old-to-new cell addressing for this mesh
const labelList& curCellProcAddr = cellProcAddressing_[procI];
forAll (cz, zoneI)
{
// Get "new" zone cell index
label& nCells = nCellsPerZone[zoneI];
// Reference to the new recon zone
labelList& zoneReconCells = reconCellZones[zoneI];
// Get all the cells in this zone
const labelList& zoneCells = cz[zoneI];
// Loop through the cells
forAll (zoneCells, i)
{
// Get cell index in the processor mesh
const label& oldCellI = zoneCells[i];
// Get cell index in the new mesh
const label& newCellI = curCellProcAddr[oldCellI];
// Redundancy check: check if the the newCellI is
// -1. This should not happen because cells have perfect
// 1-to-1 mapping
if (newCellI != -1)
{
// Insert the cell in the new recon zone and
// increment the counter
zoneReconCells[nCells++] = newCellI;
}
else
{
FatalErrorIn
(
"autoPtr<fvMesh>"
"\n processorMeshesReconstructor::"
"reconstructMesh(const Time& db)"
) << "Found unmapped cell while reconstructing"
<< " cell zones."
<< nl
<< "Cell from processor: " << procI << nl
<< "Cell zone name: " << cz[zoneI].name() << nl
<< "Index in the cell zone: " << i << nl
<< "Old cell index: " << oldCellI << nl
<< "New cell index: " << newCellI
<< abort(FatalError);
}
} // End for all cells in the zone
} // End for all cell zones
} // End scope for cell zone handling
// PART 2: Face zones. Scope for clarity and safety
{
const faceZoneMesh& fz = curMesh.faceZones();
// Get old-to-new face addressing for this mesh
const labelList& curFaceProcAddr = faceProcAddressing_[procI];
forAll (fz, zoneI)
{
// Get "new" zone face index
label& nFaces = nFacesPerZone[zoneI];
// Reference to the new recon zone and flips in the zone
labelList& zoneReconFaces = reconFaceZones[zoneI];
boolList& zoneReconFaceFlips = reconFaceZoneFlips[zoneI];
// Get all the faces in this zone and also their flips
const labelList& zoneFaces = fz[zoneI];
const boolList& zoneFlipMap = fz[zoneI].flipMap();
// Loop through the faces
forAll (zoneFaces, i)
{
// Get the face index in the processor mesh
const label& oldFaceI = zoneFaces[i];
// Get the face index in the new, reconstructed mesh
const label& newFaceI = curFaceProcAddr[oldFaceI];
// Check if the face is mapped (if the index is >= 0)
if (newFaceI > -1)
{
// This is a face that's been correctly
// mapped, insert the face in the new zone
zoneReconFaces[nFaces] = newFaceI;
// Also store the flip map of the face. Note: I'm
// pretty sure that we don't need to check whether
// the flip map has been preserved because the
// combined faces are inserted from master side
// always.
zoneReconFaceFlips[nFaces] = zoneFlipMap[i];
// Increment the number of faces for this zone
++nFaces;
}
} // End for all faces in the zone
} // End for all face zones
} // End scope for face zone handling
// PART 3: Point zones. Scope for clarity and safety
{
const pointZoneMesh& fz = curMesh.pointZones();
// Get old-to-new point addressing for this mesh
const labelList& curPointProcAddr = pointProcAddressing_[procI];
forAll (fz, zoneI)
{
// Get "new" zone point index
label& nPoints = nPointsPerZone[zoneI];
// Reference to the new recon zone
labelList& zoneReconPoints = reconPointZones[zoneI];
// Get all the points in this zone
const labelList& zonePoints = fz[zoneI];
// Loop through the points
forAll (zonePoints, i)
{
// Get point index in the processor mesh
const label& oldPointI = zonePoints[i];
// Get point index in the new mesh
const label& newPointI = curPointProcAddr[oldPointI];
// Check if the point is mapped
if (newPointI != -1)
{
// Insert the point in the new recon zone and
// increment the counter
zoneReconPoints[nPoints++] = newPointI;
}
} // End for all points in the zone
} // End for all point zones
} // End scope for point zone handling
} // End if the processor mesh is set
} // End for all processor meshes
// We need to resize the face and point zones to number of inserted
// faces/points because not all faces and points need to be
// inserted. There's nothing to do for cell zones because these are always
// mapped uniquely one-to-one
forAll (reconFaceZones, zoneI)
{
reconFaceZones[zoneI].setSize(nFacesPerZone[zoneI]);
reconFaceZoneFlips[zoneI].setSize(nFacesPerZone[zoneI]);
}
forAll (reconPointZones, zoneI)
{
reconPointZones[zoneI].setSize(nPointsPerZone[zoneI]);
}
// Now we have all the zones as ordinary lists without possible duplicate
// faces and points due to merging of processor boundaries. Create zone
// meshes
// PART 1: Cell zones
List<cellZone*> reconCz(reconCellZones.size());
// Loop through all the cell zones and create them
forAll (reconCz, zoneI)
{
// Notes:
// 1. Grab the name from the respective zone in the first valid mesh
// 2. Transfer the list of cell IDs, invalidating reconCellZones[zoneI]
reconCz[zoneI] = new cellZone
(
meshes_[fvmID].cellZones()[zoneI].name(),
reconCellZones[zoneI].xfer(),
zoneI,
globalMesh.cellZones()
);
}
// PART 2: Face zones
List<faceZone*> reconFz(reconFaceZones.size());
// Loop through all the face zones and create them
forAll (reconFz, zoneI)
{
// Notes:
// 1. Grab the name from the respective zone in the first valid mesh
// 2. Transfer the list of face IDs, invalidating reconFaceZones[zoneI]
reconFz[zoneI] = new faceZone
(
meshes_[fvmID].faceZones()[zoneI].name(),
reconFaceZones[zoneI].xfer(),
reconFaceZoneFlips[zoneI].xfer(),
zoneI,
globalMesh.faceZones()
);
}
// PART 3: Point zones
List<pointZone*> reconPz(reconPointZones.size());
// Loop through all the point zones and create them
forAll (reconPz, zoneI)
{
// Notes:
// 1. Grab the name from the respective zone in the first valid mesh
// 2. Transfer the list of point IDs, invalidating reconPointZones[zoneI]
reconPz[zoneI] = new pointZone
(
meshes_[fvmID].pointZones()[zoneI].name(),
reconPointZones[zoneI].xfer(),
zoneI,
globalMesh.pointZones()
);
}
// Add the zones into the mesh
globalMesh.addZones(reconPz, reconFz, reconCz);
// All done, return the global mesh pointer
return globalMeshPtr; return globalMeshPtr;
} }

View file

@ -844,6 +844,9 @@ bool Foam::topoChangerFvMesh::loadBalance(const dictionary& decompDict)
oldPatchNMeshPoints // oldPatchNMeshPoints oldPatchNMeshPoints // oldPatchNMeshPoints
); );
// Remove point, face and cell zones from the original mesh
removeZones();
// Reset fvMesh and patches // Reset fvMesh and patches
resetFvPrimitives resetFvPrimitives
( (
@ -857,6 +860,55 @@ bool Foam::topoChangerFvMesh::loadBalance(const dictionary& decompDict)
true // Valid boundary true // Valid boundary
); );
// Get pointers to cell/face/point zones from reconstructed mesh and "link"
// them to the new mesh
// Cell zones
const cellZoneMesh& reconCellZones = reconMesh.cellZones();
List<cellZone*> czs(reconCellZones.size());
forAll (czs, zoneI)
{
czs[zoneI] = new cellZone
(
reconCellZones[zoneI].name(),
reconCellZones[zoneI],
zoneI,
this->cellZones()
);
}
// Face zones
const faceZoneMesh& reconFaceZones = reconMesh.faceZones();
List<faceZone*> fzs(reconFaceZones.size());
forAll (fzs, zoneI)
{
fzs[zoneI] = new faceZone
(
reconFaceZones[zoneI].name(),
reconFaceZones[zoneI],
reconFaceZones[zoneI].flipMap(),
zoneI,
this->faceZones()
);
}
// Point zones
const pointZoneMesh& reconPointZones = reconMesh.pointZones();
List<pointZone*> pzs(reconPointZones.size());
forAll (pzs, zoneI)
{
pzs[zoneI] = new pointZone
(
reconPointZones[zoneI].name(),
reconPointZones[zoneI],
zoneI,
this->pointZones()
);
}
// Add the zones to the mesh
addZones(pzs, fzs, czs);
// Create field reconstructor // Create field reconstructor
fvFieldReconstructor fieldReconstructor fvFieldReconstructor fieldReconstructor
( (