This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/solidModels/rheologyModel/rheologyLaws/nonLinearElasticPlastic/nonLinearElasticPlastic.C

283 lines
7 KiB
C
Raw Normal View History

2012-09-11 15:42:55 +00:00
// The FOAM Project // File: elasticPlastic.C
/*
-------------------------------------------------------------------------------
========= | Class Implementation
\\ / |
\\ / | Name: elasticPlastic
\\ / | Family: rheologyLaw
\\/ |
F ield | FOAM version: 2.3
O peration |
A and | Copyright (C) 1991-2004 Nabla Ltd.
M anipulation | All Rights Reserved.
-------------------------------------------------------------------------------
DESCRIPTION
AUTHOR
Hrvoje Jasak.
-------------------------------------------------------------------------------
*/
#include "nonLinearElasticPlastic.H"
#include "addToRunTimeSelectionTable.H"
#include "zeroGradientFvPatchFields.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(nonLinearElasticPlastic, 0);
addToRunTimeSelectionTable(rheologyLaw, nonLinearElasticPlastic, dictionary);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from dictionary
Foam::nonLinearElasticPlastic::nonLinearElasticPlastic
(
const word& name,
const volSymmTensorField& sigma,
const dictionary& dict
)
:
rheologyLaw(name, sigma, dict),
rho_(dict.lookup("rho")),
E_(dict.lookup("E")),
nu_(dict.lookup("nu")),
sigmaY_(dict.lookup("sigmaY")),
Ep_(dict.lookup("Ep")),
matStrength_(dict.lookup("sigmaMax")),
bCf_(dict.lookup("bCf")),
nCf_(dict.lookup("nCf"))
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::nonLinearElasticPlastic::~nonLinearElasticPlastic()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::nonLinearElasticPlastic::rho() const
{
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"rho",
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh(),
rho_,
zeroGradientFvPatchScalarField::typeName
)
);
}
Foam::tmp<Foam::volScalarField> Foam::nonLinearElasticPlastic::E() const
{
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"E",
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh(),
E_,
zeroGradientFvPatchScalarField::typeName
)
);
}
Foam::tmp<Foam::volScalarField> Foam::nonLinearElasticPlastic::
E(const volScalarField& epsEq) const
{
tmp<volScalarField> tresult
(
new volScalarField
(
IOobject
(
"E",
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh(),
dimensionedScalar("zeroE", dimPressure, E_.value()),
zeroGradientFvPatchScalarField::typeName
)
);
scalar epsY = exp ( log ( log(matStrength_/(matStrength_ -
sigmaY_)).value() /bCf_.value() ) /nCf_.value() );
const scalarField& epsEqI = epsEq.internalField();
forAll(epsEqI, cellI)
{
dimensionedScalar E = matStrength_*bCf_*nCf_ *pow(epsEqI[cellI], nCf_
- 1.0) *exp(-bCf_*pow(epsEqI[cellI], nCf_));
// Correction of initial modulus to avoid infinity/GREAT
// for small strains and for unloading
// strain of 0.1% might be wrong for some materials
if(epsEqI[cellI] < 0.001)
{
E = matStrength_*bCf_*nCf_*pow(0.001, nCf_ - 1.0)
*exp(-bCf_*pow(0.001, nCf_));
}
if(epsEqI[cellI] > epsY)
{
E = matStrength_*bCf_*nCf_*pow(epsY, nCf_ - 1.0)
*exp(-bCf_*pow(epsY, nCf_));
}
tresult().internalField()[cellI] = E.value();
}
tresult().correctBoundaryConditions();
return tresult;
}
Foam::tmp<Foam::volScalarField> Foam::nonLinearElasticPlastic::nu() const
{
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"nu",
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh(),
nu_,
zeroGradientFvPatchScalarField::typeName
)
);
}
Foam::tmp<Foam::volScalarField> Foam::nonLinearElasticPlastic::sigmaY() const
{
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"sigmaY",
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh(),
sigmaY_,
zeroGradientFvPatchScalarField::typeName
)
);
}
Foam::tmp<Foam::volScalarField> Foam::nonLinearElasticPlastic::Ep() const
{
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"Ep",
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh(),
Ep_,
zeroGradientFvPatchScalarField::typeName
)
);
}
Foam::tmp<Foam::volScalarField> Foam::nonLinearElasticPlastic::
Ep(const volScalarField& sigmaEq) const
{
tmp<volScalarField> tresult
(
new volScalarField
(
IOobject
(
"Ep",
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh(),
dimensionedScalar("zeroEp", dimPressure, Ep_.value()),
zeroGradientFvPatchScalarField::typeName
)
);
scalar epsY = exp ( log ( log(matStrength_/(matStrength_ -
sigmaY_)).value() /bCf_.value() ) /nCf_.value() );
dimensionedScalar E = matStrength_*bCf_*nCf_ *pow(epsY, nCf_ - 1.0)
*exp(-bCf_*pow(epsY, nCf_));
const scalarField& sigmaEqI = sigmaEq.internalField();
forAll(sigmaEqI, cellI)
{
scalar epsCurrI = exp ( log ( log(matStrength_.value()/(max(matStrength_.value()/1e6,matStrength_.value() - sigmaEqI[cellI]))) /bCf_.value()) /nCf_.value());
dimensionedScalar Ep = matStrength_*bCf_*nCf_ *pow(epsCurrI, nCf_ - 1.0)
*exp(-bCf_*pow(epsCurrI, nCf_));
tresult().internalField()[cellI] =
Ep.value()/(1.0 - Ep.value()/E.value());
}
tresult().correctBoundaryConditions();
return tresult;
}
// ************************************************************************* //