// The FOAM Project // File: elasticPlastic.C /* ------------------------------------------------------------------------------- ========= | Class Implementation \\ / | \\ / | Name: elasticPlastic \\ / | Family: rheologyLaw \\/ | F ield | FOAM version: 2.3 O peration | A and | Copyright (C) 1991-2004 Nabla Ltd. M anipulation | All Rights Reserved. ------------------------------------------------------------------------------- DESCRIPTION AUTHOR Hrvoje Jasak. ------------------------------------------------------------------------------- */ #include "nonLinearElasticPlastic.H" #include "addToRunTimeSelectionTable.H" #include "zeroGradientFvPatchFields.H" // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // namespace Foam { defineTypeNameAndDebug(nonLinearElasticPlastic, 0); addToRunTimeSelectionTable(rheologyLaw, nonLinearElasticPlastic, dictionary); } // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // // Construct from dictionary Foam::nonLinearElasticPlastic::nonLinearElasticPlastic ( const word& name, const volSymmTensorField& sigma, const dictionary& dict ) : rheologyLaw(name, sigma, dict), rho_(dict.lookup("rho")), E_(dict.lookup("E")), nu_(dict.lookup("nu")), sigmaY_(dict.lookup("sigmaY")), Ep_(dict.lookup("Ep")), matStrength_(dict.lookup("sigmaMax")), bCf_(dict.lookup("bCf")), nCf_(dict.lookup("nCf")) {} // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * // Foam::nonLinearElasticPlastic::~nonLinearElasticPlastic() {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // Foam::tmp Foam::nonLinearElasticPlastic::rho() const { return tmp ( new volScalarField ( IOobject ( "rho", mesh().time().timeName(), mesh(), IOobject::NO_READ, IOobject::NO_WRITE ), mesh(), rho_, zeroGradientFvPatchScalarField::typeName ) ); } Foam::tmp Foam::nonLinearElasticPlastic::E() const { return tmp ( new volScalarField ( IOobject ( "E", mesh().time().timeName(), mesh(), IOobject::NO_READ, IOobject::NO_WRITE ), mesh(), E_, zeroGradientFvPatchScalarField::typeName ) ); } Foam::tmp Foam::nonLinearElasticPlastic:: E(const volScalarField& epsEq) const { tmp tresult ( new volScalarField ( IOobject ( "E", mesh().time().timeName(), mesh(), IOobject::NO_READ, IOobject::AUTO_WRITE ), mesh(), dimensionedScalar("zeroE", dimPressure, E_.value()), zeroGradientFvPatchScalarField::typeName ) ); scalar epsY = exp ( log ( log(matStrength_/(matStrength_ - sigmaY_)).value() /bCf_.value() ) /nCf_.value() ); const scalarField& epsEqI = epsEq.internalField(); forAll(epsEqI, cellI) { dimensionedScalar E = matStrength_*bCf_*nCf_ *pow(epsEqI[cellI], nCf_ - 1.0) *exp(-bCf_*pow(epsEqI[cellI], nCf_)); // Correction of initial modulus to avoid infinity/GREAT // for small strains and for unloading // strain of 0.1% might be wrong for some materials if(epsEqI[cellI] < 0.001) { E = matStrength_*bCf_*nCf_*pow(0.001, nCf_ - 1.0) *exp(-bCf_*pow(0.001, nCf_)); } if(epsEqI[cellI] > epsY) { E = matStrength_*bCf_*nCf_*pow(epsY, nCf_ - 1.0) *exp(-bCf_*pow(epsY, nCf_)); } tresult().internalField()[cellI] = E.value(); } tresult().correctBoundaryConditions(); return tresult; } Foam::tmp Foam::nonLinearElasticPlastic::nu() const { return tmp ( new volScalarField ( IOobject ( "nu", mesh().time().timeName(), mesh(), IOobject::NO_READ, IOobject::NO_WRITE ), mesh(), nu_, zeroGradientFvPatchScalarField::typeName ) ); } Foam::tmp Foam::nonLinearElasticPlastic::sigmaY() const { return tmp ( new volScalarField ( IOobject ( "sigmaY", mesh().time().timeName(), mesh(), IOobject::NO_READ, IOobject::NO_WRITE ), mesh(), sigmaY_, zeroGradientFvPatchScalarField::typeName ) ); } Foam::tmp Foam::nonLinearElasticPlastic::Ep() const { return tmp ( new volScalarField ( IOobject ( "Ep", mesh().time().timeName(), mesh(), IOobject::NO_READ, IOobject::NO_WRITE ), mesh(), Ep_, zeroGradientFvPatchScalarField::typeName ) ); } Foam::tmp Foam::nonLinearElasticPlastic:: Ep(const volScalarField& sigmaEq) const { tmp tresult ( new volScalarField ( IOobject ( "Ep", mesh().time().timeName(), mesh(), IOobject::NO_READ, IOobject::NO_WRITE ), mesh(), dimensionedScalar("zeroEp", dimPressure, Ep_.value()), zeroGradientFvPatchScalarField::typeName ) ); scalar epsY = exp ( log ( log(matStrength_/(matStrength_ - sigmaY_)).value() /bCf_.value() ) /nCf_.value() ); dimensionedScalar E = matStrength_*bCf_*nCf_ *pow(epsY, nCf_ - 1.0) *exp(-bCf_*pow(epsY, nCf_)); const scalarField& sigmaEqI = sigmaEq.internalField(); forAll(sigmaEqI, cellI) { scalar epsCurrI = exp ( log ( log(matStrength_.value()/(max(matStrength_.value()/1e6,matStrength_.value() - sigmaEqI[cellI]))) /bCf_.value()) /nCf_.value()); dimensionedScalar Ep = matStrength_*bCf_*nCf_ *pow(epsCurrI, nCf_ - 1.0) *exp(-bCf_*pow(epsCurrI, nCf_)); tresult().internalField()[cellI] = Ep.value()/(1.0 - Ep.value()/E.value()); } tresult().correctBoundaryConditions(); return tresult; } // ************************************************************************* //