simpar/sequential.cpp
2024-03-13 11:06:11 +01:00

102 lines
2.8 KiB
C++

#include <iostream>
#include <vector>
#include <math.h>
#include <iomanip>
using namespace std;
int main()
{
int l = 1925; // Edge length
int dx = 5; // Spatial step
int kmax = l / dx; // Number of spatial steps
/**
* Coefficients alpha and gamma are different for different
* edges. It depends on the edge's lenght, cross-sectional area etc.
*/
double alpha = 0.744;
double beta = 0.004;
double gamma = 5829;
/**
* dt - the number of approximation in Euler method
* h - discretization step in Euler method
*
* Those two values work well with all existing steps and give us
* result that satisfies the initial condition pretty close.
*
* Changing of any of them might result in NaN error.
*/
int dt = 100000;
double h = 0.007;
// Stores the approximated values for each step
double Q[kmax][dt];
double P[kmax][dt];
// Prepare initial condition
for (int i = 0; i < dt; i++)
{
// Loop over spatial steps
for (int k = 0; k < kmax; k++)
{
// Boundary condition for the last spatial step
if (k == kmax - 1)
{
Q[k][i] = 0;
P[k][i] = -202.0; // P = -202 when Q = 10
} else
{
Q[k][i] = 0;
P[k][i] = 0;
}
}
}
/**
* In fact, we have two 'steps'. The first step represents the approximation
* criteria in Euler's method (dt) and the second one represents the actual
* spatial step along the edge (dx).
*/
for (int i = 2; i < dt; i++)
{
// Loop over spatial steps
for (int k = 1; k < kmax; k++)
{
Q[k][i + 1] = Q[k][i] + h * (alpha * (P[k - 1][i] - P[k][i]) - beta * Q[k][i] * abs(Q[k][i]));
// DO NOT calculate pressure for the last element such as it is given by default
if (k != kmax - 1)
P[k][i + 1] = P[k][i - 2] + h * (gamma * (Q[k][i] - Q[k + 1][i]));
}
}
// Print out the first 10 values of Q for each spatial step
std::cout << "FIRST 10 VALUES\n";
for(int i = 0; i < kmax; i++)
{
std::cout.width(5);
std::cout.flags(std::ios::left);
std::cout << i << ": ";
for(int k = 0; k < 10; k++)
std::cout << std::setw(10) << Q[i][k];
std::cout << std::endl;
}
// Print out the last 10 values of Q for each spatial step
std::cout << "LAST 10 VALUES:\n";
for(int i = 1; i < kmax; i++)
{
std::cout.width(5);
std::cout.flags(std::ios::left);
std::cout << i << ": ";
for(int k = 0; k < 10; k++)
std::cout << std::setw(10) << Q[i][dt - 10 + k];
std::cout << std::endl;
}
return 0;
}