
Programming the OpenMP API
NUMA & Memory Access

1

Progamming the OpenMP API
NUMA & Memory Access



Programming the OpenMP API
NUMA & Memory Access

2

double* A;
A = (double*)
    malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {
   A[i] = 0.0;
}
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 Serial code: all array elements are allocated in the memory of the 
NUMA node closest to the core executing the initializer thread (first 
touch)

double* A;
A = (double*)
    malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {
   A[i] = 0.0;
}
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 First Touch w/ parallel code: all array elements are allocated in the 
memory of the NUMA node that contains the core that executes the
thread that initializes the partition

double* A;
A = (double*)
    malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for
for (int i = 0; i < N; i++) {
   A[i] = 0.0;
}
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 Stream example with and without parallel initialization.
 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]
b[0,N-1]
c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]
b[0,(N/2)-1]
c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]
b[N/2,N-1]
c[N/2,N-1]

Serial vs. Parallel Initialization
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Thread Binding and Memory 
Placement
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Get Info on the System Topology
 Before you design a strategy for thread binding, you should have a basic 

understanding of the system topology:
 Intel MPI‘s cpuinfo tool

module switch openmpi intelmpi

cpuinfo

Delivers information about the number of sockets (= packages) and the mapping of processor IDs to 

CPU cores used by the OS

 hwlocs‘ hwloc-ls tool

hwloc-ls

Displays a graphical representation of the system topology, separated into NUMA nodes, along with 

the mapping of processor IDs to CPU cores used by the OS and additional information on caches
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 Selecting the „right“ binding strategy depends not only on the topology, but also on 
the characteristics of your application.
 Putting threads far apart, i.e., on different sockets

May improve the aggregated memory bandwidth available to your application

May improve the combined cache size available to your application

May decrease performance of synchronization constructs

 Putting threads close together, i.e., on two adjacent cores that possibly share some caches

May improve performance of synchronization constructs

May decrease the available memory bandwidth and cache size

 If you are unsure, just try a few options and then select the best one.

Decide for Binding Strategy
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 Define OpenMP places
 set of OpenMP threads running on one or more processors

 can be defined by the user, i.e., OMP_PLACES=cores

 Define a set of OpenMP thread affinity policies
 SPREAD: spread OpenMP threads evenly among the places,

partition the place list

 CLOSE: pack OpenMP threads near primary thread

 PRIMARY: collocate OpenMP thread with primary thread

 Goals
 user has a way to specify where to execute OpenMP threads for locality between OpenMP threads / less 

false sharing / memory bandwidth

Since OpenMP 4.0: Places + Policies
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 Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

 Abstract names for OMP_PLACES:
 threads: Each place corresponds to a single hardware thread.

 cores: Each place corresponds to a single core (having one or more hardware threads).

 sockets: Each place corresponds to a single socket (consisting of one or more cores).

 ll_caches (5.1): Each place corresponds to a set of cores that share the last level cache.

 numa_domains (5.1): Each places corresponds to a set of cores for which their closest memory is: the 

same memory; and at a similar distance from the cores.

p0 p1 p2 p3 p4 p5 p6 p7

OMP_PLACES env. variable
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 Example‘s Objective:
 separate cores for outer loop and near cores for inner loop

 Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close)
 spread creates partition, compact binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-4):4:8   = cores
#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

 Example
 initial

 spread 4

 close 4

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

OpenMP 4.0: Places + Policies
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 Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

 Parallel Region with two threads, one per socket
 OMP_PLACES=sockets

 #pragma omp parallel num_threads(2) proc_bind(spread)

p0 p1 p2 p3 p4 p5 p6 p7

More Examples (1/3)
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 Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

 Parallel Region with four threads, one per core,
but only on the first socket
 OMP_PLACES=cores

 #pragma omp parallel num_threads(4) proc_bind(close)

p0 p1 p2 p3 p4 p5 p6 p7

More Examples (2/3)
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 Spread a nested loop first across two sockets,
then among the cores within each socket,
only one thread per core
 OMP_PLACES=cores

 #pragma omp parallel num_threads(2) proc_bind(spread)

 #pragma omp parallel num_threads(4) proc_bind(close)

 Places API routines allow to
 query information about binding…

 query information about the place partition…

More Examples (3/3)
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 Simple routine printing the processor ids of the place the calling thread 
is bound to:

Places API: Example

void print_binding_info() {
     int my_place = omp_get_place_num();
     int place_num_procs = omp_get_place_num_procs(my_place);
     
     printf("Place consists of %d processors: ", place_num_procs);

     int *place_processors = malloc(sizeof(int) * place_num_procs);
     omp_get_place_proc_ids(my_place, place_processors)

     for (int i = 0; i < place_num_procs - 1; i++) {
             printf("%d ", place_processors[i]);
     }
     printf("\n");

     free(place_processors);
}
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 Set OMP_DISPLAY_AFFINITY=TRUE
Instructs the runtime to display formatted affinity information
Example output for two threads on two physical cores:

Output can be formatted with OMP_AFFINITY_FORMAT env var or 
corresponding routine

Formatted affinity information can be printed with
omp_display_affinity(const char* format)

OpenMP 5.x way to do this

nesting_level=   1,   thread_num=   0,   thread_affinity=   0,1
nesting_level=   1,   thread_num=   1,   thread_affinity=   2,3
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 Example:

Possible output:

Affinity format specification
t omp_get_team_num()

T omp_get_num_teams()

L omp_get_level()

n omp_get_thread_num()

N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1

H hostname

P process identifier

i native thread identifier

A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001        0      0-1,16-17      host003
Affinity: 001        1      2-3,18-19      host003
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 Explicit NUMA-aware memory allocation:
By carefully touching data by the thread which later uses it
By changing the default memory allocation strategy

Linux: numactl command

By explicit migration of memory pages
Linux: move_pages()

 Example: using numactl to distribute pages round-
robin:
numactl –interleave=all ./a.out

Fine-grained control of Memory Affinity
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Memory Management
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 Traditional DDR-based memory
 High-bandwidth memory
 Non-volatile memory
…

Different kinds of memory

CPU: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
Freq Govenor: performance
---------------------
available: 4 nodes (0-3)
node 0 cpus: 0 2 4 6 8 10 12 14 16 18 

20 22 24 26 28 30 32 34 36 38
node 0 size: 191936 MB
node 0 free: 178709 MB
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 

25 27 29 31 33 35 37 39
node 1 size: 192016 MB
node 1 free: 179268 MB
node 2 cpus:
node 2 size: 759808 MB
node 2 free: 759794 MB
node 3 cpus:
node 3 size: 761856 MB
node 3 free: 761851 MB
node distances:
node   0   1   2   3 
0:  10  21  17  28 
1:  21  10  28  17 
2:  17  28  10  28 
3:  28  17  28  10

Cascade Lake (Leonide at INRIA)

DRAM + Optane
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 Allocator := an OpenMP object that fulfills requests to allocate and 
deallocate storage for program variables

OpenMP allocators are of type omp_allocator_handle_t

 Default allocator for host
via OMP_ALLOCATOR env. var. or corresponding API

OpenMP 5.0 supports
a set of memory allocators

Memory Management
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 Selection of a certain kind of memory

OpenMP allocators

Allocator name Storage selection intent

omp_default_mem_alloc use default storage

omp_large_cap_mem_alloc use storage with large capacity

omp_const_mem_alloc use storage optimized for read-only variables

omp_high_bw_mem_alloc use storage with high bandwidth

omp_low_lat_mem_alloc use storage with low latency

omp_cgroup_mem_alloc use storage close to all threads in the contention group 
of the thread requesting the allocation

omp_pteam_mem_alloc use storage that is close to all threads in the same 
parallel region of the thread requesting the allocation

omp_thread_local_mem_alloc use storage that is close to the thread requesting the 
allocation
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 New clause on all constructs with data sharing clauses:
 allocate( [allocator:] list )

 Allocation:
 omp_alloc(size_t size, omp_allocator_handle_t allocator)

 Deallocation:
 omp_free(void *ptr, const omp_allocator_handle_t allocator)

 allocate directive: standalone directive for allocation, or declaration of allocation 
stmt.

Using OpenMP allocators
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 Allocator traits control the behavior of the allocator

OpenMP allocator traits / 1

sync_hint contended, uncontended, serialized, private
default: contended

alignment positive integer value that is a power of two
default: 1 byte

access all, cgroup, pteam, thread
default: all

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb
default: default_mem_fb

fb_data an allocator handle

pinned true, false
default: false

partition environment, nearest, blocked, interleaved
default: environment
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 fallback: describes the behavior if the allocation cannot be fulfilled
default_mem_fb: return system’s default memory
Other options: null, abort, or use different allocator

 pinned: request pinned memory, i.e. for GPUs

OpenMP allocator traits / 2
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 partition: partitioning of allocated memory of physical storage 
resources (think of NUMA)
environment: use system’s default behavior
nearest: most closest memory
blocked: partitioning into approx. same size with at most one block per 

storage resource
interleaved: partitioning in a round-robin fashion across the storage 

resources

OpenMP allocator traits / 3
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 Construction of allocators with traits via
omp_allocator_handle_t omp_init_allocator(
omp_memspace_handle_t memspace,
int ntraits, const omp_alloctrait_t traits[]);

Selection of memory space mandatory
Empty traits set: use defaults

 Allocators have to be destroyed with *_destroy_*

 Custom allocator can be made default with
omp_set_default_allocator(omp_allocator_handle_t allocator)

Using OpenMP allocator traits
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 LLVM OpenMP runtime internally already uses libmemkind (libnuma, numactl)
 Support for various kinds of memory: DDR, HBW and Persistent Memory (Optane)
 Library loaded at initialization (checks for availability)
 If requested memory space for allocator is not available  fallback to DDR

 Memory Management implementation in LLVM still not complete
 Some allocator traits not implemented yet
 Some partition values not implemented yet (environment, interleaved, nearest, blocked)
 Semantics of omp_high_bw_mem_space and omp_large_cap_mem_space unclear. Which memory 

should be used?
Explicitly target HBM  currently implemented in LLVM

 LLVM has custom implementation of aligned memory allocation
 Allocation covers  {Allocator Information + Requested Size + Buffer based on alignment}

Memory Management Status
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