//===-- matmul.c - Different implementations of matrix multiplies -*- C -*-===// // // Part of the LOMP Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include #include #define DUMP_MATRIX 0 void matmul_seq(double * C, double * A, double * B, size_t n) { for (size_t i = 0; i < n; ++i) { for (size_t k = 0; k < n; ++k) { for (size_t j = 0; j < n; ++j) { C[i * n + j] += A[i * n + k] * B[k * n + j]; } } } } void matmul_par(double * C, double * A, double * B, size_t n) { for (size_t i = 0; i < n; ++i) { for (size_t k = 0; k < n; ++k) { for (size_t j = 0; j < n; ++j) { C[i * n + j] += A[i * n + k] * B[k * n + j]; } } } } void init_mat(double * C, double * A, double * B, size_t n) { for (size_t i = 0; i < n; ++i) { for (size_t j = 0; j < n; ++j) { C[i * n + j] = 0.0; A[i * n + j] = 0.5; B[i * n + j] = 0.25; } } } void dump_mat(double * mtx, size_t n) { for (size_t i = 0; i < n; ++i) { for (size_t j = 0; j < n; ++j) { printf("%f ", mtx[i * n + j]); } printf("\n"); } } double sum_mat(double * mtx, size_t n) { double sum = 0.0; for (size_t i = 0; i < n; ++i) { for (size_t j = 0; j < n; ++j) { sum += mtx[i * n + j]; } } return sum; } int main(int argc, char * argv[]) { double ts, te; double t_seq; double * C; double * A; double * B; // If number of arguments is not 1, print help if (argc != 2) { printf("%s: matrix_size\n", argv[0]); return EXIT_FAILURE; } const int n = atoi(argv[1]); // matrix size C = (double *)malloc(sizeof(*C) * n * n); A = (double *)malloc(sizeof(*A) * n * n); B = (double *)malloc(sizeof(*B) * n * n); init_mat(C, A, B, n); ts = omp_get_wtime(); matmul_seq(C, A, B, n); te = omp_get_wtime(); #if DUMP_MATRIX dump_mat(C, n); #endif t_seq = te - ts; printf("Sum of matrix (serial): %f, wall time %lf, speed-up %.2lf\n", sum_mat(C, n), (te - ts), t_seq / (te - ts)); init_mat(C, A, B, n); ts = omp_get_wtime(); matmul_par(C, A, B, n); te = omp_get_wtime(); #if DUMP_MATRIX dump_mat(C, n); #endif printf("Sum of matrix (parallel): %f, wall time %lf, speed-up %.2lf\n", sum_mat(C, n), (te - ts), t_seq / (te - ts)); return EXIT_SUCCESS; }