
Programming the OpenMP API
Misc Topics

1

Progamming the OpenMP API
Misc Topics & 6.0 Outlook

Programming the OpenMP API
Misc Topics

2

OpenMP Parallel Loops

Programming the OpenMP API
Misc Topics

3

 Existing loop constructs are tightly bound to execution model:

 The loop construct is meant to tell OpenMP about truly parallel
semantics of a loop.

loop Construct

join

distribute work

barrier

fork

#pragma omp parallel for
for (i=0; i<N;++i) {…}

#pragma omp simd
for (i=0; i<N;++i) {…}

…

#pragma omp taskloop
for (i=0; i<N;++i) {…}

generate tasks

taskwait

Programming the OpenMP API
Misc Topics

4

OpenMP Fully Parallel Loops

int main(int argc, const char* argv[]) {

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Define scalars n, a, b & initialize x, y

#pragma omp parallel

#pragma omp loop

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 }

}

Programming the OpenMP API
Misc Topics

5

 Syntax (C/C++)
#pragma omp loop [clause[[,] clause],…]
for-loops

 Syntax (Fortran)
!$omp loop [clause[[,] clause],…]
do-loops
[!$omp end loop]

loop Constructs, Syntax

Programming the OpenMP API
Misc Topics

6

 bind(binding)
 Binding region the loop construct should bind to
 One of: teams, parallel, thread

 order(concurrent)
 Tell the OpenMP compiler that the loop can be executed in any order.
 Default!

 collapse(n)
 private(list)

 lastprivate(list)

 reduction(reduction-id:list)

loop Constructs, Clauses

Programming the OpenMP API
Misc Topics

7

 Existing loop constructs have been extended to also have truly parallel
semantics.

 C/C++ Worksharing:
#pragma omp [for|simd] order(concurrent) \

[clause[[,] clause],…]

for-loops

 Fortran Worksharing:
!$omp [do|simd] order(concurrent) &

[clause[[,] clause],…]
do-loops
[!$omp end [do|simd}]

Extensions to Existing Constructs

8 Programming the OpenMP API
Misc Topics

DOACROSS Loops

9 Programming the OpenMP API
Misc Topics

 “DOACROSS” loops are loops with special loop schedules
Restricted form of loop-carried dependencies
Require fine-grained synchronization protocol for parallelism

 Loop-carried dependency:
Loop iterations depend on each other
Source of dependency must scheduled before sink of the dependency

 DOACROSS loop:
Data dependency is an invariant for the execution of the whole loop nest

DOACROSS Loops

10 Programming the OpenMP API
Misc Topics

 A parallel loop cannot not have any loop-carried dependencies (simplified just a
little bit!)

Parallelizable Loops

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

b[i][j] = f(b[i][j],
b[i][j], a[i][j]);

}

}

i

j

execution order
dependency

Thread 1 Thread 2

11 Programming the OpenMP API
Misc Topics

 If there is a loop-carried dependency, a loop cannot be parallelized anymore
(“easily” that is)

Non-parallelizable Loops

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

b[i][j] = f(b[i-1][j],
b[i][j-1], a[i][j]);

}

}

i

j
Thread 1 Thread 2

execution order
dependency

error

12 Programming the OpenMP API
Misc Topics

 If the data dependency is invariant, then skewing the loop helps remove the data
dependency

Wavefront-Parallel Loops

for (int i = 1; i < N; ++i) {

for (int j = i+1; j < i+N; ++j) {

b[i][j-i] = f(b[i-1][j-i],

b[i][j-i-1], a[i][j]);

}

}

i

j

execution order
dependency

error

Thread 1 Thread 2

13 Programming the OpenMP API
Misc Topics

 OpenMP 4.5 extends the notion of the ordered construct to describe loop-carried
dependencies

 Syntax (C/C++):
#pragma omp for ordered(d) [clause[[,] clause],…]

for-loops

and
#pragma omp ordered [clause[[,] clause],…]

where clause is one of the following:
depend(source)
depend(sink:vector)

 Syntax (Fortran):
!$omp do ordered(d) [clause[[,] clause],…]

do-loops

!$omp ordered [clause[[,] clause],…]

DOACROSS Loops with OpenMP

14 Programming the OpenMP API
Misc Topics

 The ordered clause tells the compiler about loop-carried dependencies and their
distances

Example

#pragma omp parallel for ordered(2)

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

#pragma omp ordered depend(sink:i-1,j) depend(sink:i,j-1)

b[i][j] = f(b[i-1][j],
b[i][j-1], a[i][j]);

}

#pragma omp ordered depend(source)

}

15 Programming the OpenMP API
Misc Topics

Example: 3D Gauss-Seidel
#pragma omp for ordered(2) private(j,k)

for (i = 1; i < N-1; ++i) {

for (j = 1; j < N-1; ++j) {

#pragma omp ordered depend(sink: i-1,j-1) depend(sink: i-1,j) \

depend(sink: i-1,j+1) depend(sink: i,j-1)

for (k = 1; k < N-1; ++k) {

double tmp1 = (p[i-1][j-1][k-1] + p[i-1][j-1][k] + p[i-1][j-1][k+1]

+ p[i-1][j][k-1] + p[i-1][j][k] + p[i-1][j][k+1]

+ p[i-1][j+1][k-1] + p[i-1][j+1][k] + p[i-1][j+1][k+1]);

double tmp2 = (p[i][j-1][k-1] + p[i][j-1][k] + p[i][j-1][k+1]

+ p[i][j][k-1] + p[i][j][k] + p[i][j][k+1]

+ p[i][j+1][k-1] + p[i][j+1][k] + p[i][j+1][k+1]);

double tmp3 = (p[i+1][j-1][k-1] + p[i+1][j-1][k] + p[i+1][j-1][k+1]

+ p[i+1][j][k-1] + p[i+1][j][k] + p[i+1][j][k+1]

+ p[i+1][j+1][k-1] + p[i+1][j+1][k] + p[i+1][j+1][k+1]);

p[i][j][k] = (tmp1 + tmp2 + tmp3) / 27.0;

}

#pragma omp ordered depend(source)

}

}

16 Programming the OpenMP API
Misc Topics

 OpenMP 4.5 extends the notion of the ordered construct to describe loop-carried
dependencies

 Syntax (C/C++):
#pragma omp for ordered [clause[[,] clause],…]

for-loops

and
#pragma omp ordered [clause[[,] clause],…]

where clause is one of the following:
doacross(source:vector), vector can be omp_cur_iteration
doacross(sink:vector)

 Syntax (Fortran):
!$omp do ordered [clause[[,] clause],…]

do-loops

!$omp ordered [clause[[,] clause],…]

DOACROSS Loops with OpenMP

17 Programming the OpenMP API
Misc Topics

 The ordered clause tells the compiler about loop-carried dependencies and their
distances

Example

#pragma omp parallel for ordered

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

#pragma omp ordered doacross(sink:i-1,j) doacross(sink:i,j-1)

b[i][j] = f(b[i-1][j],
b[i][j-1], a[i][j]);

}

#pragma omp ordered doacross(source:omp_cur_iteration)

}

18 Programming the OpenMP API
Misc Topics

Example: 3D Gauss-Seidel
#pragma omp for ordered private(j,k)

for (i = 1; i < N-1; ++i) {

for (j = 1; j < N-1; ++j) {

#pragma omp ordered doacross(sink: i-1,j-1) doacross(sink: i-1,j) \

doacross(sink: i-1,j+1) doacross(sink: i,j-1)

for (k = 1; k < N-1; ++k) {

double tmp1 = (p[i-1][j-1][k-1] + p[i-1][j-1][k] + p[i-1][j-1][k+1]

+ p[i-1][j][k-1] + p[i-1][j][k] + p[i-1][j][k+1]

+ p[i-1][j+1][k-1] + p[i-1][j+1][k] + p[i-1][j+1][k+1]);

double tmp2 = (p[i][j-1][k-1] + p[i][j-1][k] + p[i][j-1][k+1]

+ p[i][j][k-1] + p[i][j][k] + p[i][j][k+1]

+ p[i][j+1][k-1] + p[i][j+1][k] + p[i][j+1][k+1]);

double tmp3 = (p[i+1][j-1][k-1] + p[i+1][j-1][k] + p[i+1][j-1][k+1]

+ p[i+1][j][k-1] + p[i+1][j][k] + p[i+1][j][k+1]

+ p[i+1][j+1][k-1] + p[i+1][j+1][k] + p[i+1][j+1][k+1]);

p[i][j][k] = (tmp1 + tmp2 + tmp3) / 27.0;

}

#pragma omp ordered doacross(source:omp_cur_iteration)

}

}

19 Programming the OpenMP API
Misc Topics

OpenMP Meta-Programming

20 Programming the OpenMP API
Misc Topics

 Construct OpenMP directives for different OpenMP contexts
 Limited form of meta-programming for OpenMP directives and clauses

The metadirective Directive

#pragma omp target map(to:v1,v2) map(from:v3)
#pragma omp metadirective \

when(device={arch(nvptx)}: teams loop) \
default(parallel loop)

for (i = lb; i < ub; i++)
v3[i] = v1[i] * v2[i];

!$omp begin metadirective &
when(implementation={unified_shared_memory}: target) &
default(target map(mapper(vec_map),tofrom: vec))

!$omp teams distribute simd
do i=1, vec%size()

call vec(i)%work()
end do
!$omp end teams distribute simd
!$omp end metadirective

21 Programming the OpenMP API
Misc Topics

Nothing Directive

22 Programming the OpenMP API
Misc Topics

 The nothing directive makes meta programming a bit clearer and more flexible.
 If a certain criterion matches, the nothing directive can stand to indicate that no

(other) OpenMP directive should be used.
The nothing directive is implicitly added if no condition matches

The nothing Directive

!$omp begin metadirective &
when(implementation={unified_shared_memory}: &

target teams distribute parallel do simd) &
default(nothing)

do i=1, vec%size()
call vec(i)%work()

end do
!$omp end metadirective

23 Programming the OpenMP API
Misc Topics

Error Directive

24 Programming the OpenMP API
Misc Topics

 Syntax (C/C++)
#pragma omp error [clause[[,] clause],…]
for-loops

 Syntax (Fortran)
!$omp error [clause[[,] clause],…]
do-loops
[!$omp end loop]

 Clauses
one of: at(compilation), at(runtime)
one of: severity(fatal), severity(warning)
message(msg-string)

Error Directive Syntax

25 Programming the OpenMP API
Misc Topics

 Can be used to issue a warning or an error at compile time and runtime.
 Consider this a “directive version” of assert(), but with a bit more flexibility.

Error Directive

#pragma omp parallel
{

if (omp_get_num_threads() % 2) {
#pragma omp error at(runtime) severity(warning) \

message(“Running on odd number of threads\n”);
}
do_stuff_that_works_best_with_even_thread_count();

}

26 Programming the OpenMP API
Misc Topics

 Can be used to issue a warning or an error at compile time and runtime.
 Consider this a “directive version” of assert(), but with a bit more flexibility.
 More useful in combination with OpenMP metadirective

Error Directive

!$omp begin metadirective &
when(arch={fancy_processor}: parallel) &
default(error severity(fatal) at(compilation) &

message(“No implementation available”)
call fancy_impl_for_fancy_processor()

!$omp end metadirective

27 Programming the OpenMP API
Misc Topics

Free-agent threads
(OpenMP 6.0 feature)

28 Programming the OpenMP API
Misc Topics

 Supports unstructured parallelism
 unbounded loops

 recursive functions

 Why are the parallel and single directives needed?
 Otherwise all threads in the team generate (duplicate) tasks
 Only threads in the team may execute tasks

Recall the tasking execution model

while (<expr>) {
...

}

void myfunc(<args>)
{

...; myfunc(<newargs>); ...;
}

Task pool

Parallel Team

#pragma omp parallel
#pragma omp single
while (elem != NULL) {

#pragma omp task
compute(elem);

elem = elem->next;
}

 Example (unstructured parallelism)

29 Programming the OpenMP API
Misc Topics

 Positive aspects
 Simplifies resource management
 Clear semantics with respect to other teams

 Negative aspects
 Ignores unutilized resources
 Complicates code structure for task-only programs

 Alternative starting in OpenMP 6.0: free-agent threads
 Unassigned threads in contention group may execute tasks
 Can provide parallelism in the implicit parallel region
 Exploits unused resources, common practice of parked threads

Is restricting tasks to a team good?

Task pool

Contention group

while (elem != NULL) {
#pragma omp task threadset(omp_pool)

compute(elem);
elem = elem->next;

}

 Example (no parallel directive needed)

30 Programming the OpenMP API
Misc Topics

 Existing behavior is preserved by default
 As if threadset clause is specified with value of omp_team

 Tasks are still tied by default so free-agent thread executes the task completely if at all
 Task synchronization (e.g., dependences, taskwait and taskgroup) unchanged

 Can use environment variables to control ICVs to reserve threads

 At least two threads available for structured parallelism, at least two available to act as free-agents
 Minimum for structured parallelism is one (the initial thread)
 Sum of reservations should not exceed thread-limit-var ICV

Some details for free-agent threads

#pragma omp task threadset(omp_team)
{structured-block}

setenv OMP_THREADS_RESERVE "structured(2),free_agent(2)"

31 Programming the OpenMP API
Misc Topics

Future Directions

32 Programming the OpenMP API
Misc Topics

 TR12 demonstrates appropriate progress for second TR of a major version
 Major new feature targets have been clearly identified and are on track for 2024
Free-agent threads significantly change execution model, implementations

User-defined induction and induction clause expand parallelism support

Many significant device support improvements (e.g., memscope(all)) added or planned

Several other additions and improvements planned, including:

Rationalization of definition of combined constructs

Task dependences between concurrently generated tasks

Significant improvements to usability and correctness of specification

TR13 (final comment draft) will be released in summer 2024

OpenMP 6.0 will be released in November 2024

33 Programming the OpenMP API
Misc Topics

 Free-agent threads
 Support for top-level task parallelism (i.e., explicit parallel directive not needed)

 “Any” thread can execute explicit tasks for which threadset clause evaluates is omp_pool

Adds associated runtime routines, environment variables and ICVs
 Major improvements for use of a single device

 Explicit progress guarantee adopted in TR11

Default device and visible devices to simplify control of device use and availability

Mechanisms to simplify use of device memory (by providing greater certainty or clarity)

New groupprivate directive in TR11 is an initial mechanism in this direction

Added selfmap modifier to ensure no copy is created when possible

Unified host and device allocators and added significant cross-device improvements

 TR12 added coexecute directive (i.e., descriptive array language offload support)

Major new features will characterize OpenMP 6.0

34 Programming the OpenMP API
Misc Topics

 A more complete set of loop transforming directives
TR12 includes fuse, reverse and interchange directives

Considering other transformations that include fission and nestify

Can now transform generated loops using the apply clause

 Clauses and directives to support generalized induction
Capture computation that follows a well-defined sequence across loop iterations

Generalizes behavior of linear clause and of loop iteration variables

Related to reductions, including addition of declare induction directive

OpenMP 6.0 will include other significant new features

	Progamming the OpenMP API
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

