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OpenMP Parallel Loops
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 Existing loop constructs are tightly bound to execution model:

 The loop construct is meant to tell OpenMP about truly parallel 
semantics of a loop.

loop Construct

join

distribute work

barrier

fork

#pragma omp parallel for
for (i=0; i<N;++i) {…}

#pragma omp simd
for (i=0; i<N;++i) {…}

…

#pragma omp taskloop
for (i=0; i<N;++i) {…}

generate tasks

taskwait
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OpenMP Fully Parallel Loops

int main(int argc, const char* argv[]) {

    float *x = (float*) malloc(n * sizeof(float)); 

    float *y = (float*) malloc(n * sizeof(float)); 

    // Define scalars n, a, b & initialize x, y

#pragma omp parallel

#pragma omp loop

    for (int i = 0; i < n; ++i){

      y[i] = a*x[i] + y[i];

    }

  }

}
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 Syntax (C/C++)
#pragma omp loop [clause[[,] clause],…] 
for-loops

 Syntax (Fortran)
!$omp loop [clause[[,] clause],…] 
do-loops
[!$omp end loop]

loop Constructs, Syntax
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 bind(binding)
 Binding region the loop construct should bind to
 One of: teams, parallel, thread

 order(concurrent)
 Tell the OpenMP compiler that the loop can be executed in any order.
 Default!

 collapse(n)
 private(list)

 lastprivate(list)

 reduction(reduction-id:list)

loop Constructs, Clauses
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 Existing loop constructs have been extended to also have truly parallel 
semantics.

 C/C++ Worksharing:
#pragma omp [for|simd] order(concurrent) \

[clause[[,] clause],…]

for-loops 

 Fortran Worksharing:
!$omp [do|simd] order(concurrent) & 

[clause[[,] clause],…] 
do-loops
[!$omp end [do|simd}]

Extensions to Existing Constructs
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DOACROSS Loops
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 “DOACROSS” loops are loops with special loop schedules
Restricted form of loop-carried dependencies
Require fine-grained synchronization protocol for parallelism

 Loop-carried dependency:
Loop iterations depend on each other
Source of dependency must scheduled before sink of the dependency

 DOACROSS loop:
Data dependency is an invariant for the execution of the whole loop nest

DOACROSS Loops
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 A parallel loop cannot not have any loop-carried dependencies (simplified just a 
little bit!)

Parallelizable Loops

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

b[i][j] = f(b[i][j],
b[i][j], a[i][j]);

}

}

i

j

execution order
dependency

Thread 1 Thread 2
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 If there is a loop-carried dependency, a loop cannot be parallelized anymore 
(“easily” that is)

Non-parallelizable Loops

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

b[i][j] = f(b[i-1][j],
b[i][j-1], a[i][j]);

}

}

i

j
Thread 1 Thread 2

execution order
dependency

error
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 If the data dependency is invariant, then skewing the loop helps remove the data 
dependency

Wavefront-Parallel Loops

for (int i = 1; i < N; ++i) {

for (int j = i+1; j < i+N; ++j) {

b[i][j-i] = f(b[i-1][j-i],            

b[i][j-i-1], a[i][j]);

}

}

i

j

execution order
dependency

error

Thread 1 Thread 2
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 OpenMP 4.5 extends the notion of the ordered construct to describe loop-carried 
dependencies

 Syntax (C/C++):
#pragma omp for ordered(d) [clause[[,] clause],…]

for-loops

and 
#pragma omp ordered [clause[[,] clause],…]

where clause is one of the following: 
depend(source) 
depend(sink:vector)

 Syntax (Fortran):
!$omp do ordered(d) [clause[[,] clause],…]

do-loops

!$omp ordered [clause[[,] clause],…]

DOACROSS Loops with OpenMP
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 The ordered clause tells the compiler about loop-carried dependencies and their 
distances

Example

#pragma omp parallel for ordered(2)

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

#pragma omp ordered depend(sink:i-1,j) depend(sink:i,j-1)

b[i][j] = f(b[i-1][j],
b[i][j-1], a[i][j]);

}

#pragma omp ordered depend(source)

}
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Example: 3D Gauss-Seidel
#pragma omp for ordered(2) private(j,k)

for (i = 1; i < N-1; ++i) {

for (j = 1; j < N-1; ++j)   {

#pragma omp ordered depend(sink: i-1,j-1) depend(sink: i-1,j) \

depend(sink: i-1,j+1) depend(sink: i,j-1)

for (k = 1; k < N-1; ++k) {

double tmp1 = (p[i-1][j-1][k-1] + p[i-1][j-1][k] + p[i-1][j-1][k+1]

+ p[i-1][j][k-1] + p[i-1][j][k] + p[i-1][j][k+1]

+ p[i-1][j+1][k-1] + p[i-1][j+1][k] + p[i-1][j+1][k+1]);

double tmp2 = (p[i][j-1][k-1] + p[i][j-1][k] + p[i][j-1][k+1]

+ p[i][j][k-1] + p[i][j][k] + p[i][j][k+1]

+ p[i][j+1][k-1] + p[i][j+1][k] + p[i][j+1][k+1]);

double tmp3 = (p[i+1][j-1][k-1] + p[i+1][j-1][k] + p[i+1][j-1][k+1]

+ p[i+1][j][k-1] + p[i+1][j][k] + p[i+1][j][k+1]

+ p[i+1][j+1][k-1] + p[i+1][j+1][k] + p[i+1][j+1][k+1]);

p[i][j][k] = (tmp1 + tmp2 + tmp3) / 27.0;

}

#pragma omp ordered depend(source)

}

}
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 OpenMP 4.5 extends the notion of the ordered construct to describe loop-carried 
dependencies

 Syntax (C/C++):
#pragma omp for ordered [clause[[,] clause],…]

for-loops

and 
#pragma omp ordered [clause[[,] clause],…]

where clause is one of the following: 
doacross(source:vector), vector can be omp_cur_iteration
doacross(sink:vector)

 Syntax (Fortran):
!$omp do ordered [clause[[,] clause],…]

do-loops

!$omp ordered [clause[[,] clause],…]

DOACROSS Loops with OpenMP



17 Programming the OpenMP API
Misc Topics

 The ordered clause tells the compiler about loop-carried dependencies and their 
distances

Example

#pragma omp parallel for ordered

for (int i = 1; i < N; ++i) {

for (int j = 1; j < M; ++j) {

#pragma omp ordered doacross(sink:i-1,j) doacross(sink:i,j-1)

b[i][j] = f(b[i-1][j],
b[i][j-1], a[i][j]);

}

#pragma omp ordered doacross(source:omp_cur_iteration)

}
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Example: 3D Gauss-Seidel
#pragma omp for ordered private(j,k)

for (i = 1; i < N-1; ++i) {

for (j = 1; j < N-1; ++j)   {

#pragma omp ordered doacross(sink: i-1,j-1) doacross(sink: i-1,j) \

doacross(sink: i-1,j+1) doacross(sink: i,j-1)

for (k = 1; k < N-1; ++k) {

double tmp1 = (p[i-1][j-1][k-1] + p[i-1][j-1][k] + p[i-1][j-1][k+1]

+ p[i-1][j][k-1] + p[i-1][j][k] + p[i-1][j][k+1]

+ p[i-1][j+1][k-1] + p[i-1][j+1][k] + p[i-1][j+1][k+1]);

double tmp2 = (p[i][j-1][k-1] + p[i][j-1][k] + p[i][j-1][k+1]

+ p[i][j][k-1] + p[i][j][k] + p[i][j][k+1]

+ p[i][j+1][k-1] + p[i][j+1][k] + p[i][j+1][k+1]);

double tmp3 = (p[i+1][j-1][k-1] + p[i+1][j-1][k] + p[i+1][j-1][k+1]

+ p[i+1][j][k-1] + p[i+1][j][k] + p[i+1][j][k+1]

+ p[i+1][j+1][k-1] + p[i+1][j+1][k] + p[i+1][j+1][k+1]);

p[i][j][k] = (tmp1 + tmp2 + tmp3) / 27.0;

}

#pragma omp ordered doacross(source:omp_cur_iteration)

}

}
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OpenMP Meta-Programming
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 Construct OpenMP directives for different OpenMP contexts
 Limited form of meta-programming for OpenMP directives and clauses

The metadirective Directive

#pragma omp target map(to:v1,v2) map(from:v3)
#pragma omp metadirective \

when( device={arch(nvptx)}: teams loop ) \
default( parallel loop )

for (i = lb; i < ub; i++)
v3[i] = v1[i] * v2[i];

!$omp begin metadirective &
when( implementation={unified_shared_memory}: target ) &
default( target map(mapper(vec_map),tofrom: vec) )

!$omp teams distribute simd
do i=1, vec%size()

call vec(i)%work()
end do
!$omp end teams distribute simd
!$omp end metadirective
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Nothing Directive
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 The nothing directive makes meta programming a bit clearer and more flexible.
 If a certain criterion matches, the nothing directive can stand to indicate that no 

(other) OpenMP directive should be used.
The nothing directive is implicitly added if no condition matches

The nothing Directive

!$omp begin metadirective &
when( implementation={unified_shared_memory}: &

target teams distribute parallel do simd) &
default( nothing )

do i=1, vec%size()
call vec(i)%work()

end do
!$omp end metadirective
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Error Directive
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 Syntax (C/C++)
#pragma omp error [clause[[,] clause],…] 
for-loops

 Syntax (Fortran)
!$omp error [clause[[,] clause],…] 
do-loops
[!$omp end loop]

 Clauses
one of: at(compilation), at(runtime)
one of: severity(fatal), severity(warning)
message(msg-string)

Error Directive Syntax
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 Can be used to issue a warning or an error at compile time and runtime.
 Consider this a “directive version” of assert(), but with a bit more flexibility.

Error Directive

#pragma omp parallel
{

if (omp_get_num_threads() % 2) {
#pragma omp error at(runtime) severity(warning) \

message(“Running on odd number of threads\n”);
}
do_stuff_that_works_best_with_even_thread_count();

}
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 Can be used to issue a warning or an error at compile time and runtime.
 Consider this a “directive version” of assert(), but with a bit more flexibility.
 More useful in combination with OpenMP metadirective

Error Directive

!$omp begin metadirective &
when( arch={fancy_processor}: parallel ) &
default( error severity(fatal) at(compilation) & 

message(“No implementation available” )
call fancy_impl_for_fancy_processor()

!$omp end metadirective
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Free-agent threads
(OpenMP 6.0 feature)
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 Supports unstructured parallelism
 unbounded loops

 recursive functions

 Why are the parallel and single directives needed?
 Otherwise all threads in the team generate (duplicate) tasks
 Only threads in the team may execute tasks

Recall the tasking execution model

while ( <expr> ) {
...

}

void myfunc( <args> )
{

...; myfunc( <newargs> ); ...;
}

Task pool

Parallel Team

#pragma omp parallel
#pragma omp single
while (elem != NULL) {

#pragma omp task
compute(elem);

elem = elem->next;
}

 Example (unstructured parallelism)
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 Positive aspects
 Simplifies resource management
 Clear semantics with respect to other teams

 Negative aspects
 Ignores unutilized resources
 Complicates code structure for task-only programs

 Alternative starting in OpenMP 6.0: free-agent threads
 Unassigned threads in contention group may execute tasks
 Can provide parallelism in the implicit parallel region
 Exploits unused resources, common practice of parked threads

Is restricting tasks to a team good?

Task pool

Contention group

while (elem != NULL) {
#pragma omp task threadset(omp_pool)

compute(elem);
elem = elem->next;

}

 Example (no parallel directive needed)
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 Existing behavior is preserved by default
 As if threadset clause is specified with value of omp_team

 Tasks are still tied by default so free-agent thread executes the task completely if at all
 Task synchronization (e.g., dependences, taskwait and taskgroup) unchanged 

 Can use environment variables to control ICVs to reserve threads

 At least two threads available for structured parallelism, at least two available to act as free-agents
 Minimum for structured parallelism is one (the initial thread)
 Sum of reservations should not exceed thread-limit-var ICV

Some details for free-agent threads

#pragma omp task threadset(omp_team)
{structured-block}

setenv OMP_THREADS_RESERVE "structured(2),free_agent(2)"
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Future Directions
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 TR12 demonstrates appropriate progress for second TR of a major version
 Major new feature targets have been clearly identified and are on track for 2024
Free-agent threads significantly change execution model, implementations

User-defined induction and induction clause expand parallelism support

Many significant device support improvements (e.g., memscope(all)) added or planned

Several other additions and improvements planned, including:

Rationalization of definition of combined constructs

Task dependences between concurrently generated tasks

Significant improvements to usability and correctness of specification

TR13 (final comment draft) will be released in summer 2024 

OpenMP 6.0 will be released in November 2024
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 Free-agent threads
 Support for top-level task parallelism (i.e., explicit parallel directive not needed)

 “Any” thread can execute explicit tasks for which threadset clause evaluates is omp_pool

Adds associated runtime routines, environment variables and ICVs
 Major improvements for use of a single device

 Explicit progress guarantee adopted in TR11

Default device and visible devices to simplify control of device use and availability

Mechanisms to simplify use of device memory (by providing greater certainty or clarity)

New groupprivate directive in TR11 is an initial mechanism in this direction

Added selfmap modifier to ensure no copy is created when possible

Unified host and device allocators and added significant cross-device improvements

 TR12 added coexecute directive (i.e., descriptive array language offload support)

Major new features will characterize OpenMP 6.0
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 A more complete set of loop transforming directives 
TR12 includes fuse, reverse and interchange directives

Considering other transformations that include fission and nestify

Can now transform generated loops using the apply clause

 Clauses and directives to support generalized induction 
Capture computation that follows a well-defined sequence across loop iterations

Generalizes behavior of linear clause and of loop iteration variables

Related to reductions, including addition of declare induction directive

OpenMP 6.0 will include other significant new features
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