
Programming the OpenMP API
Introduction to OpenMP Tasks

1

Progamming the OpenMP API
Introduction to OpenMP Tasks

Programming the OpenMP API
Introduction to OpenMP Tasks

2

 Lets solve Sudoku puzzles with brute multi-core force

Sudoko for Lazy Computer Scientists

 (1) Search an empty field

 (2) Try all numbers:
 (2 a) Check Sudoku
 If invalid: skip
 If valid: Go to next field

 Wait for completion

Programming the OpenMP API
Introduction to OpenMP Tasks

3

 Tasks are work units whose execution
 may be deferred or…

… can be executed immediately

 Tasks are composed of
 code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

 Tasks are created…
… when reaching a parallel region  implicit tasks are created (per thread)

… when encountering a task construct  explicit task is created

… when encountering a taskloop construct  explicit tasks per chunk are created

… when encountering a target construct  target task is created

What is a task in OpenMP?

Programming the OpenMP API
Introduction to OpenMP Tasks

4

The OpenMP Execution Model
Fork and Join ModelPrimary

Thread

Worker
Threads

Parallel
region

Synchronization

Parallel
region

Worker
Threads

Synchronization

#pragma omp parallel
{

....
}

#pragma omp parallel
{

....
}

Programming the OpenMP API
Introduction to OpenMP Tasks

5

 Single: only one thread in the team executes the code enclosed

masked: the primary thread executes the code enclosed

The Single and Masked Directives

#pragma omp single [private][firstprivate] \
[copyprivate][nowait]

{
<code-block>

}

#pragma omp masked
{<code-block>}

There is no implied
barrier on entry or

exit !

Programming the OpenMP API
Introduction to OpenMP Tasks

66 Advanced OpenMP Tutorial – TITLE OF YOUR TALK
YOUR NAME

Tasking Motivation

Programming the OpenMP API
Introduction to OpenMP Tasks

7

 Lets solve Sudoku puzzles with brute multi-core force

Sudoko for Lazy Computer Scientists

 (1) Search an empty field

 (2) Try all numbers:
 (2 a) Check Sudoku
 If invalid: skip
 If valid: Go to next field

 Wait for completion

Programming the OpenMP API
Introduction to OpenMP Tasks

8

 This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

 (1) Search an empty field

 (2) Try all numbers:
 (2 a) Check Sudoku
 If invalid: skip
 If valid: Go to next field

 Wait for completion

first call contained in a
#pragma omp parallel
#pragma omp single
such that one tasks starts the
execution of the algorithm

#pragma omp task
needs to work on a new copy
of the Sudoku board

#pragma omp taskwait
wait for all child tasks

Programming the OpenMP API
Introduction to OpenMP Tasks

9

Performance Evaluation

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

Sp
ee

du
p

Ru
nt

im
e

[s
ec

] f
or

 1
6x

16

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

Is this the best
we can can do?

Programming the OpenMP API
Introduction to OpenMP Tasks

10

 Supports unstructured parallelism
 unbounded loops

 recursive functions

 Several scenarios are possible:
 single creator, multiple creators, nested tasks (tasks & WS)

 All threads in the team are candidates to execute tasks

Tasking execution model

while (<expr>) {
...

}

void myfunc(<args>)
{

...; myfunc(<newargs>); ...;
}

Task pool

Parallel Team

#pragma omp parallel
#pragma omp single
while (elem != NULL) {

#pragma omp task
compute(elem);

elem = elem->next;
}

 Example (unstructured parallelism)

Programming the OpenMP API
Introduction to OpenMP Tasks

11

!$omp task [clause[[,] clause]...]
…structured-block…
!$omp end task

Synchronization

Cutoff Strategies

Data Environment

 Deferring (or not) a unit of work (executable for any member of the team)

 Where clause is one of:

The task construct

 if(scalar-expression)

 mergeable

 final(scalar-expression)

 depend(dep-type: list)

 untied

 priority(priority-value)

 affinity(list)

 private(list)

 firstprivate(list)

 shared(list)

 default(shared | none)

 in_reduction(r-id: list)

 allocate([allocator:] list)

 detach(event-handler)

#pragma omp task [clause[[,] clause]...]
{structured-block}

Task Scheduling
Miscellaneous

Programming the OpenMP API
Introduction to OpenMP Tasks

12

 Tasks are tied by default (when no untied clause present)
 tied tasks are executed always by the same thread (not necessarily creator)

 tied tasks may run into performance problems

 Programmers may specify tasks to be untied (relax scheduling)

 can potentially switch to any thread (of the team)

 bad mix with thread based features: thread-id, threadprivate, critical regions...

 gives the runtime more flexibility to schedule tasks

 but most of OpenMP implementations doesn’t “honor” untied 

Task scheduling: tied vs untied tasks

#pragma omp task untied
{structured-block}

Programming the OpenMP API
Introduction to OpenMP Tasks

13

 Task scheduling points (and the taskyield directive)
 tasks can be suspended/resumed at TSPs  some additional constraints to avoid deadlock problems

 implicit scheduling points (creation, synchronization, ...)

 explicit scheduling point: the taskyield directive

 Scheduling [tied/untied] tasks: example

Task scheduling: taskyield directive

#pragma omp taskyield

#pragma omp parallel
#pragma omp single
{

#pragma omp task
{

foo();
#pragma omp taskyield
bar()

}
}

single

foo()

bar()

untied:

single

foo() bar()tied:

untied

(default)

Programming the OpenMP API
Introduction to OpenMP Tasks

14

 Programmers may specify a priority value when creating a task

 pvalue: the higher  the best (will be scheduled earlier)

 once a thread becomes idle, gets one of the highest priority tasks

Task scheduling: programmer’s hints

#pragma omp parallel
#pragma omp single
{

for (i = 0; i < SIZE; i++) {
#pragma omp task priority(1)
{ code_A; }

}
#pragma omp task priority(100)
{ code_B; }
...

}

#pragma omp task priority(pvalue)
{structured-block}

Task pool
priority-aware

Parallel Team

Programming the OpenMP API
Introduction to OpenMP Tasks

15

 The taskwait directive (shallow task synchronization)
 It is a stand-alone directive

 wait on the completion of child tasks of the current task; just direct children, not all descendant tasks;

includes an implicit task scheduling point (TSP)

Task synchronization: taskwait directive

#pragma omp taskwait

#pragma omp parallel
#pragma omp single
{

#pragma omp task
{

#pragma omp task
{ … }
#pragma omp task
{ … …}
#pragma omp taskwait

}
} // implicit barrier will wait for C.x

C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …}

B C
: B

: C

Programming the OpenMP API
Introduction to OpenMP Tasks

16

 OpenMP barrier (implicit or explicit)
 All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

 And all other implicit barriers at parallel, sections, for, single, etc…

Task synchronization: barrier semantics

#pragma omp barrier

Programming the OpenMP API
Introduction to OpenMP Tasks

17

 The taskgroup construct (deep task synchronization)
 attached to a structured block; completion of all descendants of the current task; TSP at the end

 where clause (could only be): reduction(reduction-identifier: list-items)

Task synchronization: taskgroup construct

#pragma omp taskgroup [clause[[,] clause]...]
{structured-block}

#pragma omp parallel
#pragma omp single
{

#pragma omp taskgroup
{

#pragma omp task
{ … }
#pragma omp task
{ … #C.1; #C.2; …}

} // end of taskgroup
}

wait for…

B C

C.1 C.2

A

:B

:C

: A

Programming the OpenMP API
Introduction to OpenMP Tasks

18

Data Environment

Programming the OpenMP API
Introduction to OpenMP Tasks

19

 Explicit data-sharing clauses (shared, private and firstprivate)

 If default clause present, what the clause says
 shared: data which is not explicitly included in any other data sharing clause will be shared

 none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

Explicit data-sharing clauses

#pragma omp task shared(a)
{
// Scope of a: shared

}

#pragma omp task private(b)
{
// Scope of b: private

}

#pragma omp task firstprivate(c)
{
// Scope of c: firstprivate

}

#pragma omp task default(shared)
{
// Scope of all the references, not explicitly
// included in any other data sharing clause,
// and with no pre-determined attribute: shared
}

#pragma omp task default(none)
{
// Compiler will force to specify the scope for
// every single variable referenced in the context
}

Hint: Use default(none) to be forced to think about every
variable if you do not see clearly.

Programming the OpenMP API
Introduction to OpenMP Tasks

20

 threadprivate variables are threadprivate (1)
 dynamic storage duration objects are shared (malloc, new,…) (2)
 static data members are shared (3)
 variables declared inside the construct

static storage duration variables are shared (4)

automatic storage duration variables are private (5)
 the loop iteration variable(s)…

Pre-determined data-sharing attributes

void foo(void){
static int s = MN;

}

#pragma omp task
{

foo(); // s@foo(): shared
}

int A[SIZE];
#pragma omp threadprivate(A)

// ...
#pragma omp task
{
// A: threadprivate

}

int *p;

p = malloc(sizeof(float)*SIZE);

#pragma omp task
{

// *p: shared
}

#pragma omp task
{

int x = MN;
// Scope of x: private

}

#pragma omp task
{

static int y;
// Scope of y: shared

}

1 2 3

4

5

Programming the OpenMP API
Introduction to OpenMP Tasks

21

Implicit data-sharing attributes (in-practice)

int a = 1;
void foo() {

int b = 2, c = 3;
#pragma omp parallel private(b)
{

int d = 4;
#pragma omp task
{

int e = 5;
// Scope of a: shared
// Scope of b: firstprivate
// Scope of c: shared
// Scope of d: firstprivate
// Scope of e: private

}
}

}

 (in-practice) variable values within the task:
 value of a: 1

 value of b: x // undefined (undefined in parallel)

 value of c: 3

 value of d: 4

 value of e: 5

 Implicit data-sharing rules for the task region
 the shared attribute is lexically inherited

 in any other case the variable is firstprivate

 Pre-determined rules (can not change)

 Explicit data-sharing clauses (+ default)

 Implicit data-sharing rules

Programming the OpenMP API
Introduction to OpenMP Tasks

22

Task reductions (using taskgroup)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{ // [1]

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [2]

res += node->value;
}
node = node->next;

}
} // [3]

}
}

 Reduction operation
 perform some forms of recurrence calculations

 associative and commutative operators
 The (taskgroup) scoping reduction clause

 Register a new reduction at [1]

 Computes the final result after [3]
 The (task) in_reduction clause [participating]

 Task participates in a reduction operation [2]

#pragma omp task in_reduction(op: list)
{structured-block}

#pragma omp taskgroup task_reduction(op: list)
{structured-block}

Programming the OpenMP API
Introduction to OpenMP Tasks

23

Task reductions (+ modifiers)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel reduction(task,+: res)
{ // [1][2]

#pragma omp single
{

#pragma omp taskgroup
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [3]

res += node->value;
}
node = node->next;

}
}

}
} // [4]

 Reduction modifiers
 Former reductions clauses have been extended

 task modifier allows to express task reductions

 Registering a new task reduction [1]

 Implicit tasks participate in the reduction [2]

 Compute final result after [4]
 The (task) in_reduction clause [participating]

 Task participates in a reduction operation [3]

#pragma omp task in_reduction(op: list)
{structured-block}

Programming the OpenMP API
Introduction to OpenMP Tasks

24

Improving Tasking Performance:
Cutoff clauses and strategies

Programming the OpenMP API
Introduction to OpenMP Tasks

2525 Advanced OpenMP Tutorial – TITLE OF YOUR TALK
YOUR NAME

Example: Sudoku revisited

Programming the OpenMP API
Introduction to OpenMP Tasks

26

 This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

 (1) Search an empty field

 (2) Try all numbers:
 (2 a) Check Sudoku
 If invalid: skip
 If valid: Go to next

field

 Wait for completion

first call contained in a
#pragma omp parallel
#pragma omp single
such that one tasks starts the
execution of the algorithm

#pragma omp task
needs to work on a new copy
of the Sudoku board

#pragma omp taskwait
wait for all child tasks

Programming the OpenMP API
Introduction to OpenMP Tasks

27

Performance Evaluation

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

du
p

Ru
nt

im
e

[s
ec

] f
or

 1
6x

16

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

Programming the OpenMP API
Introduction to OpenMP Tasks

28

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

Programming the OpenMP API
Introduction to OpenMP Tasks

29

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

If you have enough parallelism, stop creating more tasks!!
• if-clause, final-clause, mergeable-clause
• natively in your program code

Programming the OpenMP API
Introduction to OpenMP Tasks

30

Performance Evaluation (with cutoff)

0

2

4

6

8

10

12

14

16

18

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

du
p

Ru
nt

im
e

[s
ec

] f
or

 1
6x

16

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff

speedup: Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding, cutoff

Programming the OpenMP API
Introduction to OpenMP Tasks

31

 Rule of thumb: the if(expression)clause as a “switch off” mechanism
 Allows lightweight implementations of task creation and execution but it reduces the parallelism

 If the expression of the if clause evaluates to false
 the encountering task is suspended

 the new task is executed immediately (task

dependences are respected!!)

 the encountering task resumes its execution

once the new task is completed

 This is known as undeferred task

 Even if the expression is false, data-sharing clauses are honored

The if clause

int foo(int x) {
printf(“entering foo function\n”);
int res = 0;
#pragma omp task shared(res) if(false)
{

res += x;
}
printf(“leaving foo function\n”);

}

Really useful to debug tasking applications!

Programming the OpenMP API
Introduction to OpenMP Tasks

32

 The final(expression) clause
 Nested tasks / recursive applications

 allows to avoid future task creation  reduces overhead but also reduces parallelism

 If the expression of the final clause evaluates to true
 The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)

 Data-sharing clauses are honored too!

The final clause

A

B C

C.1 C.2

e == false e == true A

…
Code_B;
Code_C;

code_c1;
code_c2;

...

#pragma omp task final(e)
{
#pragma omp task
{ … }
#pragma omp task
{ … #C.1; #C.2 … }
#pragma omp taskwait

}

Programming the OpenMP API
Introduction to OpenMP Tasks

33

 The mergeable clause
 Optimization: get rid of “data-sharing clauses are honored”

 This optimization can only be applied in undeferred or included tasks

 A Task that is annotated with the mergeable clause is called a mergeable task
 A task that may be a merged task if it is an undeferred task or an included task

 A merged task is:
 A task for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

 A good implementation could execute a merged task without adding any OpenMP-
related overhead

The mergeable clause

Unfortunately, there are no OpenMP
commercial implementations taking

advantatge of final neither mergeable =(

Programming the OpenMP API
Introduction to OpenMP Tasks

3434 Advanced OpenMP Tutorial – TITLE OF YOUR TALK
YOUR NAME

Example: Fibonacci

Programming the OpenMP API
Introduction to OpenMP Tasks

35

Fibonacci: without cutoff
int fib(int n) {
if (n < 2)
return n;

int res1, res2;
#pragma omp task shared(res1)
res1 = fib(n-1);

#pragma omp task shared(res2)
res2 = fib(n-2);

#pragma omp taskwait

return res1 + res2;
}

icc 2018.0

gcc 7.2.0

Programming the OpenMP API
Introduction to OpenMP Tasks

36

Fibonacci: if clause
int fib(int n) {
if (n < 2)
return n;

int res1, res2;
#pragma omp task shared(res1) if(n > 30)
res1 = fib(n-1);

#pragma omp task shared(res2) if(n > 30)
res2 = fib(n-2);

#pragma omp taskwait

return res1 + res2;
}

icc 2018.0

gcc 7.2.0

Programming the OpenMP API
Introduction to OpenMP Tasks

37

Fibonacci: manual optimization
int fib(int n) {
if (n < 30)
return fib_serial(n);

int res1, res2;
#pragma omp task shared(res1)
res1 = fib(n-1);

#pragma omp task shared(res2)
res2 = fib(n-2);

#pragma omp taskwait

return res1 + res2;
}

icc 2018.0

gcc 7.2.0

Programming the OpenMP API
Introduction to OpenMP Tasks

38

Improving Tasking Performance:
Task Affinity (OpenMP 5.0 feature)

Programming the OpenMP API
Introduction to OpenMP Tasks

39

 Techniques for process binding & thread pinning available
OpenMP thread level: OMP_PLACES & OMP_PROC_BIND

OS functionality: taskset -c

OpenMP Tasking:
 In general: Tasks may be executed by any thread in the team
Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:
 affinity clause to express affinity to data

Motivation

Programming the OpenMP API
Introduction to OpenMP Tasks

40

 New clause: #pragma omp task affinity (list)

Hint to the runtime to execute task closely to physical data location

Clear separation between dependencies and affinity

 Expectations:
Improve data locality / reduce remote memory accesses

Decrease runtime variability

 Still expect task stealing
In particular, if a thread is under-utilized

affinity clause

Programming the OpenMP API
Introduction to OpenMP Tasks

41

 Excerpt from task-parallel STREAM

Loops have been blocked manually (see tmp_idx_start/end)

Assumption: initialization and computation have same blocking and same affinity

Code Example

1 #pragma omp task \
2 shared(a, b, c, scalar) \
3 firstprivate(tmp_idx_start, tmp_idx_end) \
4 affinity(a[tmp_idx_start])
5 {
6 int i;
7 for(i = tmp_idx_start; i <= tmp_idx_end; i++)
8 a[i] = b[i] + scalar * c[i];
9 }

Programming the OpenMP API
Introduction to OpenMP Tasks

42

Selected LLVM implementation details
Encounter task

region …

Task with
data

affinity?

Push to local
queue

Location
for data

reference in
map?

Identify NUMA
domain where
data is stored

Select thread
pinned to

NUMA domain

Save
{reference,

location} in map

Push task into
other threads

queue
end

Yes

No

Yes

No

A map is introduced to
store location information
of data that was previously
used

Jannis Klinkenberg, Philipp Samfass,
Christian Terboven, Alejandro Duran,
Michael Klemm, Xavier Teruel, Sergi
Mateo, Stephen L. Olivier, and Matthias
S. Müller. Assessing Task-to-Data Affinity
in the LLVM OpenMP Runtime.
Proceedings of the 14th International
Workshop on OpenMP, IWOMP 2018.
September 26-28, 2018, Barcelona,
Spain.

Programming the OpenMP API
Introduction to OpenMP Tasks

43

Evaluation (Merge-Sort, from paper above)
Program runtime
Median of 10 runs

Distribution of single
task execution times

LIKWID: reduction of remote data volume from 69% to 13%

Speedup
of 4.3 X

	Progamming the OpenMP API
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

