
Programming the OpenMP API
NUMA & Memory Access

1

Progamming the OpenMP API
NUMA & Memory Access

Programming the OpenMP API
NUMA & Memory Access

2

double* A;
A = (double*)
 malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {
 A[i] = 0.0;
}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

How To Distribute The Data ?

Programming the OpenMP API
NUMA & Memory Access

3

 Serial code: all array elements are allocated in the memory of the
NUMA node closest to the core executing the initializer thread (first
touch)

double* A;
A = (double*)
 malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {
 A[i] = 0.0;
}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

Programming the OpenMP API
NUMA & Memory Access

4

 First Touch w/ parallel code: all array elements are allocated in the
memory of the NUMA node that contains the core that executes the
thread that initializes the partition

double* A;
A = (double*)
 malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for
for (int i = 0; i < N; i++) {
 A[i] = 0.0;
}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

First Touch Memory Placement

Programming the OpenMP API
NUMA & Memory Access

5

 Stream example with and without parallel initialization.
 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]
b[0,N-1]
c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]
b[0,(N/2)-1]
c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]
b[N/2,N-1]
c[N/2,N-1]

Serial vs. Parallel Initialization

Programming the OpenMP API
NUMA & Memory Access

6

Thread Binding and Memory
Placement

Programming the OpenMP API
NUMA & Memory Access

7

Get Info on the System Topology
 Before you design a strategy for thread binding, you should have a basic

understanding of the system topology:
 Intel MPI‘s cpuinfo tool

module switch openmpi intelmpi

cpuinfo

Delivers information about the number of sockets (= packages) and the mapping of processor IDs to

CPU cores used by the OS

 hwlocs‘ hwloc-ls tool

hwloc-ls

Displays a graphical representation of the system topology, separated into NUMA nodes, along with

the mapping of processor IDs to CPU cores used by the OS and additional information on caches

Programming the OpenMP API
NUMA & Memory Access

8

 Selecting the „right“ binding strategy depends not only on the topology, but also on
the characteristics of your application.
 Putting threads far apart, i.e., on different sockets

May improve the aggregated memory bandwidth available to your application

May improve the combined cache size available to your application

May decrease performance of synchronization constructs

 Putting threads close together, i.e., on two adjacent cores that possibly share some caches

May improve performance of synchronization constructs

May decrease the available memory bandwidth and cache size

 If you are unsure, just try a few options and then select the best one.

Decide for Binding Strategy

Programming the OpenMP API
NUMA & Memory Access

9

 Define OpenMP places
 set of OpenMP threads running on one or more processors

 can be defined by the user, i.e., OMP_PLACES=cores

 Define a set of OpenMP thread affinity policies
 SPREAD: spread OpenMP threads evenly among the places,

partition the place list

 CLOSE: pack OpenMP threads near primary thread

 PRIMARY: collocate OpenMP thread with primary thread

 Goals
 user has a way to specify where to execute OpenMP threads for locality between OpenMP threads / less

false sharing / memory bandwidth

Since OpenMP 4.0: Places + Policies

Programming the OpenMP API
NUMA & Memory Access

10

 Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

 Abstract names for OMP_PLACES:
 threads: Each place corresponds to a single hardware thread.

 cores: Each place corresponds to a single core (having one or more hardware threads).

 sockets: Each place corresponds to a single socket (consisting of one or more cores).

 ll_caches (5.1): Each place corresponds to a set of cores that share the last level cache.

 numa_domains (5.1): Each places corresponds to a set of cores for which their closest memory is: the

same memory; and at a similar distance from the cores.

p0 p1 p2 p3 p4 p5 p6 p7

OMP_PLACES env. variable

Programming the OpenMP API
NUMA & Memory Access

11

 Example‘s Objective:
 separate cores for outer loop and near cores for inner loop

 Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close)
 spread creates partition, compact binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-4):4:8 = cores
#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

 Example
 initial

 spread 4

 close 4

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

OpenMP 4.0: Places + Policies

Programming the OpenMP API
NUMA & Memory Access

12

 Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

 Parallel Region with two threads, one per socket
 OMP_PLACES=sockets

 #pragma omp parallel num_threads(2) proc_bind(spread)

p0 p1 p2 p3 p4 p5 p6 p7

More Examples (1/3)

Programming the OpenMP API
NUMA & Memory Access

13

 Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

 Parallel Region with four threads, one per core,
but only on the first socket
 OMP_PLACES=cores

 #pragma omp parallel num_threads(4) proc_bind(close)

p0 p1 p2 p3 p4 p5 p6 p7

More Examples (2/3)

Programming the OpenMP API
NUMA & Memory Access

14

 Spread a nested loop first across two sockets,
then among the cores within each socket,
only one thread per core
 OMP_PLACES=cores

 #pragma omp parallel num_threads(2) proc_bind(spread)

 #pragma omp parallel num_threads(4) proc_bind(close)

 Places API routines allow to
 query information about binding…

 query information about the place partition…

More Examples (3/3)

Programming the OpenMP API
NUMA & Memory Access

15

 Simple routine printing the processor ids of the place the calling thread
is bound to:

Places API: Example

void print_binding_info() {
 int my_place = omp_get_place_num();
 int place_num_procs = omp_get_place_num_procs(my_place);

 printf("Place consists of %d processors: ", place_num_procs);

 int *place_processors = malloc(sizeof(int) * place_num_procs);
 omp_get_place_proc_ids(my_place, place_processors)

 for (int i = 0; i < place_num_procs - 1; i++) {
 printf("%d ", place_processors[i]);
 }
 printf("\n");

 free(place_processors);
}

Programming the OpenMP API
NUMA & Memory Access

16

 Set OMP_DISPLAY_AFFINITY=TRUE
Instructs the runtime to display formatted affinity information
Example output for two threads on two physical cores:

Output can be formatted with OMP_AFFINITY_FORMAT env var or
corresponding routine

Formatted affinity information can be printed with
omp_display_affinity(const char* format)

OpenMP 5.x way to do this

nesting_level= 1, thread_num= 0, thread_affinity= 0,1
nesting_level= 1, thread_num= 1, thread_affinity= 2,3

Programming the OpenMP API
NUMA & Memory Access

17

 Example:

Possible output:

Affinity format specification
t omp_get_team_num()

T omp_get_num_teams()

L omp_get_level()

n omp_get_thread_num()

N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1

H hostname

P process identifier

i native thread identifier

A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001 0 0-1,16-17 host003
Affinity: 001 1 2-3,18-19 host003

Programming the OpenMP API
NUMA & Memory Access

18

 Explicit NUMA-aware memory allocation:
By carefully touching data by the thread which later uses it
By changing the default memory allocation strategy

Linux: numactl command

By explicit migration of memory pages
Linux: move_pages()

 Example: using numactl to distribute pages round-
robin:
numactl –interleave=all ./a.out

Fine-grained control of Memory Affinity

Programming the OpenMP API
NUMA & Memory Access

1919

Memory Management

Programming the OpenMP API
NUMA & Memory Access

20

 Traditional DDR-based memory
 High-bandwidth memory
 Non-volatile memory
…

Different kinds of memory

CPU: Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
Freq Govenor: performance

available: 4 nodes (0-3)
node 0 cpus: 0 2 4 6 8 10 12 14 16 18

20 22 24 26 28 30 32 34 36 38
node 0 size: 191936 MB
node 0 free: 178709 MB
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23

25 27 29 31 33 35 37 39
node 1 size: 192016 MB
node 1 free: 179268 MB
node 2 cpus:
node 2 size: 759808 MB
node 2 free: 759794 MB
node 3 cpus:
node 3 size: 761856 MB
node 3 free: 761851 MB
node distances:
node 0 1 2 3
0: 10 21 17 28
1: 21 10 28 17
2: 17 28 10 28
3: 28 17 28 10

Cascade Lake (Leonide at INRIA)

DRAM + Optane

Programming the OpenMP API
NUMA & Memory Access

21

 Allocator := an OpenMP object that fulfills requests to allocate and
deallocate storage for program variables

OpenMP allocators are of type omp_allocator_handle_t

 Default allocator for host
via OMP_ALLOCATOR env. var. or corresponding API

OpenMP 5.0 supports
a set of memory allocators

Memory Management

Programming the OpenMP API
NUMA & Memory Access

22

 Selection of a certain kind of memory

OpenMP allocators

Allocator name Storage selection intent

omp_default_mem_alloc use default storage

omp_large_cap_mem_alloc use storage with large capacity

omp_const_mem_alloc use storage optimized for read-only variables

omp_high_bw_mem_alloc use storage with high bandwidth

omp_low_lat_mem_alloc use storage with low latency

omp_cgroup_mem_alloc use storage close to all threads in the contention group
of the thread requesting the allocation

omp_pteam_mem_alloc use storage that is close to all threads in the same
parallel region of the thread requesting the allocation

omp_thread_local_mem_alloc use storage that is close to the thread requesting the
allocation

Programming the OpenMP API
NUMA & Memory Access

23

 New clause on all constructs with data sharing clauses:
 allocate([allocator:] list)

 Allocation:
 omp_alloc(size_t size, omp_allocator_handle_t allocator)

 Deallocation:
 omp_free(void *ptr, const omp_allocator_handle_t allocator)

 allocate directive: standalone directive for allocation, or declaration of allocation
stmt.

Using OpenMP allocators

Programming the OpenMP API
NUMA & Memory Access

24

 Allocator traits control the behavior of the allocator

OpenMP allocator traits / 1

sync_hint contended, uncontended, serialized, private
default: contended

alignment positive integer value that is a power of two
default: 1 byte

access all, cgroup, pteam, thread
default: all

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb
default: default_mem_fb

fb_data an allocator handle

pinned true, false
default: false

partition environment, nearest, blocked, interleaved
default: environment

Programming the OpenMP API
NUMA & Memory Access

25

 fallback: describes the behavior if the allocation cannot be fulfilled
default_mem_fb: return system’s default memory
Other options: null, abort, or use different allocator

 pinned: request pinned memory, i.e. for GPUs

OpenMP allocator traits / 2

Programming the OpenMP API
NUMA & Memory Access

26

 partition: partitioning of allocated memory of physical storage
resources (think of NUMA)
environment: use system’s default behavior
nearest: most closest memory
blocked: partitioning into approx. same size with at most one block per

storage resource
interleaved: partitioning in a round-robin fashion across the storage

resources

OpenMP allocator traits / 3

Programming the OpenMP API
NUMA & Memory Access

27

 Construction of allocators with traits via
omp_allocator_handle_t omp_init_allocator(
omp_memspace_handle_t memspace,
int ntraits, const omp_alloctrait_t traits[]);

Selection of memory space mandatory
Empty traits set: use defaults

 Allocators have to be destroyed with *_destroy_*

 Custom allocator can be made default with
omp_set_default_allocator(omp_allocator_handle_t allocator)

Using OpenMP allocator traits

Programming the OpenMP API
NUMA & Memory Access

28

 LLVM OpenMP runtime internally already uses libmemkind (libnuma, numactl)
 Support for various kinds of memory: DDR, HBW and Persistent Memory (Optane)
 Library loaded at initialization (checks for availability)
 If requested memory space for allocator is not available fallback to DDR

 Memory Management implementation in LLVM still not complete
 Some allocator traits not implemented yet
 Some partition values not implemented yet (environment, interleaved, nearest, blocked)
 Semantics of omp_high_bw_mem_space and omp_large_cap_mem_space unclear. Which memory

should be used?
Explicitly target HBM currently implemented in LLVM

 LLVM has custom implementation of aligned memory allocation
 Allocation covers {Allocator Information + Requested Size + Buffer based on alignment}

Memory Management Status

	Progamming the OpenMP API
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

