
Programming the OpenMP API
Introduction

1

Programming the OpenMP API

Michael Klemm

Principal Member of Technical Staff Chief Executive Office
Compilers, Languages, Runtimes & Tools OpenMP Architecture Review Board

Machine Learning & Software Engineering

Introduction

Programming the OpenMP API
Introduction

2

Credits…

Michael Klemm

Christian Terboven

Bronis R. de Supinski

Xavier Teruel

Programming the OpenMP API
Introduction

3

• De-facto standard for Shared-Memory Parallelization.

• 1997: OpenMP 1.0 for FORTRAN
• 1998: OpenMP 1.0 for C and C++
• 1999: OpenMP 1.1 for FORTRAN
• 2000: OpenMP 2.0 for FORTRAN
• 2002: OpenMP 2.0 for C and C++
• 2005: OpenMP 2.5 now includes both programming languages.

• 05/2008: OpenMP 3.0
• 07/2011: OpenMP 3.1

• 07/2013: OpenMP 4.0
• 11/2015: OpenMP 4.5

• 11/2018: OpenMP 5.0
• 11/2020: OpenMP 5.1
• 11/2021: OpenMP 5.2

History

http://www.OpenMP.org

Programming the OpenMP API
Introduction

4

What is OpenMP?

• Parallel Region & Worksharing

• Tasking

• SIMD / Vectorization

• Accelerator Programming

• …

Programming the OpenMP API
Introduction

5

Get your C/C++ and Fortran Reference Guide!
Covers all of OpenMP 5.1/5.2!

Programming the OpenMP API
Introduction

6

OpenMP API Specification & Examples

https://link.openmp.org/book52
https://link.openmp.org/tr11

https://link.openmp.org/examples521

Programming the OpenMP API
Introduction

7

A book that covers all of the
OpenMP 4.5 features, 2017

A new book about the OpenMP
Common Core, 2019

Recent Books About OpenMP

Programming the OpenMP API
Introduction

8

• Roadmap for the releases of the OpenMP API
– 5-year cadence for major releases, one minor release in between
– OpenMP 5.2 was an additional release before OpenMP version 6.0
– (At least) one Technical Report (TR) with feature previews in every year

OpenMP Roadmap

Public Comment
Draft (TR10)

Public Comment
Draft (TR13*)

Nov’20 Nov’21 Nov’22 Nov’23 Nov’24 Nov’25

OpenMP 5.1 TR11
6.0 Prev #1

TR12
6.0 Prev #2 OpenMP 6.0OpenMP 5.2 TR14*

Nov’26

OpenMP 6.x

Public Comment
Draft (TR15*)

You are here.

Version Year

4.0 2013

5.0 2018

6.0 2024

7.0 2029

Programming the OpenMP API
Introduction

9

Programming the OpenMP API
Parallel Region

Programming the OpenMP API
Introduction

10

• OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

have seen.

Parallelization in OpenMP
employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus

Programming the OpenMP API
Introduction

11

• All threads have access to
the same, globally shared
memory

• Data in private memory is
only accessible by the thread
owning this memory

• No other thread sees the
change(s) in private memory

• Data transfer is through shared
memory and is 100% transparent
to the application

The OpenMP Memory Model

T

private
memory

T
private

memory

T T
private

memory

private
memory

T
private

memory

Shared
Memory

accelerator
memory

PU

PU

PU

PU

Programming the OpenMP API
Introduction

12

• OpenMP programs start with
just one thread: the Primary Thread.

• Worker threads are spawned
at Parallel Regions, together
with the primary thread they form the
Team of threads.

• In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

• Concept: Fork-Join.
• Allows for an incremental parallelization!

The OpenMP Execution Model

Primary Thread Serial Part

Parallel
RegionSlave

ThreadsSlave
ThreadsWorker
Threads

Parallel
Region

Serial Part

Programming the OpenMP API
Introduction

13

 Specification of number of threads:
– Environment variable: OMP_NUM_THREADS=…
– Or: Via num_threads clause:

add num_threads(num) to the
parallel construct

• The parallelism has to be expressed explicitly.

• Structured Block
– Exactly one entry point at the top
– Exactly one exit point at the bottom
– Branching in or out is not allowed
– Terminating the program is allowed

(abort / exit)

Parallel Region and Structured Blocks

C/C++

#pragma omp parallel
{
 ...
 structured block
 ...
}

Fortran

!$omp parallel
 ...
 structured block
 ...
!$omp end parallel

Programming the OpenMP API
Introduction

14

• From within a shell, global setting of the number of threads:
export OMP_NUM_THREADS=4

./program

• From within a shell, one-time setting of the number of threads:
OMP_NUM_THREADS=4 ./program

Starting OpenMP Programs on Linux

Programming the OpenMP API
Introduction

15

Using OpenMP Compilers

Programming the OpenMP API
Introduction

16

 GCC
 clang/LLVM
 Intel Classic and Next-gen Compilers
 AOCC, AOMP, ROCmCC
 IBM XL
 … and many more

 See https://www.openmp.org/resources/openmp-compilers-tools/ for a list

Production Compilers w/ OpenMP Support

https://www.openmp.org/resources/openmp-compilers-tools/

Programming the OpenMP API
Introduction

17

 Enable OpenMP via the compiler’s command-line switches
 GCC: -fopenmp

 clang: -fopenmp

 Intel: -fopenmp or –qopenmp (classic) or –fiopenmp (next-gen)

 AOCC, AOCL, ROCmCC: -fopenmp

 HPE/Cray CPE: -homp

 IBM XL: -qsmp=omp

 Switches have to be passed to both compiler and linker:

Compiling OpenMP

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o
$./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time 0.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49

Programming the OpenMP API
Introduction

18

Hello OpenMP World

Demo

Programming the OpenMP API
Introduction

19

Worksharing

Programming the OpenMP API
Introduction

20

• If only the parallel construct is used, each thread executes the Structured Block.
• Program Speedup: Worksharing
• OpenMP‘s most common Worksharing construct: for

– Distribution of loop iterations over all threads in a Team.
– Scheduling of the distribution can be influenced.

• Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i;
#pragma omp for
for (i = 0; i < 100; i++)
{
 a[i] = b[i] + c[i];
}

Fortran

INTEGER :: i
!$omp do
DO i = 0, 99
 a[i] = b[i] + c[i]
END DO

Programming the OpenMP API
Introduction

21

Worksharing illustrated

do i = 0, 99
a(i) = b(i) + c(i)

end do

do i = 0, 24
a(i) = b(i) + c(i)

end do

do i = 25, 49
a(i) = b(i) + c(i)

end do

do i = 50, 74
a(i) = b(i) + c(i)

end do

do i = 75, 99
a(i) = b(i) + c(i)

end do

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

Programming the OpenMP API
Introduction

22

• OpenMP barrier (implicit or explicit)
– Threads wait until all threads of the current Team have reached the barrier

• All worksharing constructs contain an implicit barrier at the end

The Barrier Construct

C/C++

#pragma omp barrier

Programming the OpenMP API
Introduction

23

• The single construct specifies that the enclosed structured block is executed by only on thread of the
team.
– It is up to the runtime which thread that is.

• Useful for:
– I/O
– Memory allocation and deallocation, etc. (in general: setup work)
– Implementation of the single-creator parallel-executor pattern as we will see later…

The Single Construct

C/C++

#pragma omp single [clause]
... structured block ...

Fortran

!$omp single [clause]
... structured block ...
!$omp end single

Programming the OpenMP API
Introduction

24

• The master construct specified that the enclosed structured block is executed only by the primary thread
of a team.
– Note: The master construct was no worksharing construct and does not contain an implicit barrier at the end.

• Replacement: see the masked construct later on.

The Master Construct is going to be removed with OpenMP 6.0 (2025)

C/C++

#pragma omp master[clause]
... structured block ...

Fortran

!$omp master[clause]
... structured block ...
!$omp end master

Programming the OpenMP API
Introduction

25

Vector Addition

Demo

Programming the OpenMP API
Introduction

26

• for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

– schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

– schedule(dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

– schedule(guided [, chunk]): Similar to dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

• Default is schedule(static).

Influencing the For Loop Scheduling / 1

Programming the OpenMP API
Introduction

27

Influencing the For Loop Scheduling / 2

 Static Schedule
 schedule(static [, chunk])

 Decomposition

depending on chunksize

 Equal parts of size ‘chunksize’

distributed in round-robin

fashion

 Pros?
 No/low runtime overhead

 Cons?
 No dynamic workload balancing

Programming the OpenMP API
Introduction

28

• Dynamic schedule
– schedule(dynamic [, chunk])

– Iteration space divided into blocks of chunk size
– Threads request a new block after finishing the previous one
– Default chunk size is 1

• Pros ?
– Workload distribution

• Cons?
– Runtime Overhead
– Chunk size essential for performance
– No NUMA optimizations possible

Influencing the For Loop Scheduling / 3

Programming the OpenMP API
Introduction

29

• Can all loops be parallelized with for-constructs? No!
– Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.

BUT: This test alone is not sufficient:

• Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i, int s = 0;

#pragma omp parallel for
for (i = 0; i < 100; i++)
{
 s = s + a[i];
}

Programming the OpenMP API
Introduction

30

• A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

• Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)
{
 ... structured block ...
}

C/C++

int i, s = 0;
#pragma omp parallel for
for (i = 0; i < 100; i++)
{

#pragma omp critical
 { s = s + a[i]; }
}

Programming the OpenMP API
Introduction

31

Scoping

Programming the OpenMP API
Introduction

32

• Managing the Data Environment is the challenge of OpenMP.

• Scoping in OpenMP: Dividing variables in shared and private:
– private-list and shared-list on Parallel Region
– private-list and shared-list on Worksharing constructs
– General default is shared for Parallel Region, firstprivate for Tasks.
– Loop control variables on for-constructs are private
– Non-static variables local to Parallel Regions are private
– private: A new uninitialized instance is created for the task or each thread executing the construct

• firstprivate: Initialization with the value before encountering the construct
• lastprivate: Value of last loop iteration is written back to the variable in the primary thread

– Static variables are shared

Scoping Rules

Tasks are
introduced later

Programming the OpenMP API
Introduction

33

• Global / static variables can be privatized with the threadprivate directive
– One instance is created for each thread

• Before the first parallel region is encountered
• Instance exists until the program ends
• Does not work (well) with nested Parallel Region

– Based on thread-local storage (TLS)
• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;
#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i
!$omp threadprivate(i)

Programming the OpenMP API
Introduction

34

• Global / static variables can be privatized with the threadprivate directive
– One instance is created for each thread

• Before the first parallel region is encountered
• Instance exists until the program ends
• Does not work (well) with nested Parallel Region

– Based on thread-local storage (TLS)
• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;
#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i
!$omp threadprivate(i)

Programming the OpenMP API
Introduction

35

Back to our example

C/C++

int i, s = 0;
#pragma omp parallel for
for (i = 0; i < 100; i++)
{

#pragma omp critical
 { s = s + a[i]; }
}

Programming the OpenMP API
Introduction

36

#pragma omp parallel

{

#pragma omp for
for (i = 0; i < 99; i++)
{

s = s + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99
s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

Programming the OpenMP API
Introduction

37

#pragma omp parallel

{

double ps = 0.0; // private variable

#pragma omp for
for (i = 0; i < 99; i++)
{

ps = ps + a[i];
}

#pragma omp critical

{

s += ps;

}

} // end parallel

(done)

do i = 0, 99
s = s + a(i)

end do

do i = 0, 24
s1 = s1 + a(i)

end do
s = s + s1

do i = 25, 49
s2 = s2 + a(i)

end do
s = s + s2

do i = 50, 74
s3 = s3 + a(i)

end do
s = s + s3

do i = 75, 99
s4 = s4 + a(i)

end do
s = s + s4

Programming the OpenMP API
Introduction

38

• In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.
– reduction(operator:list)
– The result is provided in the associated reduction variable

– Possible reduction operators with initialization value:
+ (0), * (1), - (0), & (~0), | (0), && (1), || (0), ^ (0), min
(largest number), max (least number)

– Remark: OpenMP also supports user-defined reductions (not covered here)

The Reduction Clause

C/C++

int i, s = 0;

#pragma omp parallel for reduction(+:s)
for(i = 0; i < 99; i++)
{
 s = s + a[i];
}

Programming the OpenMP API
Introduction

39

PI

Example

Programming the OpenMP API
Introduction

40

Example: Pi (1/2)

double f(double x)
{
 return (4.0 / (1.0 + x*x));
}

double CalcPi (int n)
{

const double fH = 1.0 / (double) n;
 double fSum = 0.0;
 double fX;
 int i;

#pragma omp parallel for
for (i = 0; i < n; i++)

 {
 fX = fH * ((double)i + 0.5);
 fSum += f(fX);
 }
 return fH * fSum;
}

𝜋𝜋 = �
0

1
4

1 + 𝑥𝑥2

Programming the OpenMP API
Introduction

41

Example: Pi (2/2)

double f(double x)
{
 return (4.0 / (1.0 + x*x));
}

double CalcPi (int n)
{

const double fH = 1.0 / (double) n;
 double fSum = 0.0;
 double fX;
 int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for (i = 0; i < n; i++)

 {
 fX = fH * ((double)i + 0.5);
 fSum += f(fX);
 }
 return fH * fSum;
}

𝜋𝜋 = �
0

1
4

1 + 𝑥𝑥2

Programming the OpenMP API
Introduction

42

PI

Demo

	Programming the OpenMP API
	Credits…
	History
	What is OpenMP?
	Slide Number 5
	Slide Number 6
	Slide Number 7
	OpenMP Roadmap
	Programming the OpenMP API
	OpenMP‘s machine model
	The OpenMP Memory Model
	The OpenMP Execution Model
	Parallel Region and Structured Blocks
	Starting OpenMP Programs on Linux
	
	Slide Number 16
	Slide Number 17
	Slide Number 18
	
	For Worksharing
	Worksharing illustrated
	The Barrier Construct
	The Single Construct
	The Master Construct is going to be removed with OpenMP 6.0 (2025)
	Slide Number 25
	Influencing the For Loop Scheduling / 1
	Slide Number 27
	Influencing the For Loop Scheduling / 3
	Synchronization Overview
	Synchronization: Critical Region
	
	Scoping Rules
	Privatization of Global/Static Variables
	Privatization of Global/Static Variables
	Back to our example
	Slide Number 36
	Slide Number 37
	The Reduction Clause
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42

