OpenMIP

Programming the OpenMP API

Introduction

Michael Klemm

Principal Member of Technical Staff Chief Executive Office
Compilers, Languages, Runtimes & Tools OpenMP Architecture Review Board
Machine Learning & Software Engineering

1 Programming the OpenMP API
Introduction

OpenMIP

Credits...

Michael Klemm OpenMP AM Da

Christian Terboven

Bronis R. de Supinski

Xavier Teruel

p) Programming the OpenMP API
Introduction

OpenMIP

History

* De-facto standard for Shared-Memory Parallelization.

e 1997: OpenMP 1.0 for FORTRAN Open M P

 1998: OpenMP 1.0 for Cand C++
e 1999: OpenMP 1.1 for FORTRAN
e 2000: OpenMP 2.0 for FORTRAN
e 2002: OpenMP 2.0 for Cand C++
e 2005: OpenMP 2.5 now includes both programming languages.

 05/2008: OpenMP 3.0
« 07/2011: OpenMP 3.1

 07/2013: OpenMP 4.0
« 11/2015: OpenMP 4.5

« 11/2018: OpenMP 5.0
« 11/2020: OpenMP 5.1
« 11/2021: OpenMP 5.2

http://www.OpenMP.org

Programming the OpenMP API
Introduction

OpenMIP

What is OpenMP?

Parallel Region & Worksharing

Tasking

SIMD / Vectorization

Accelerator Programming

4 Programming the OpenMP API
Introduction

OpenMIP

Get your C/C++ and Fortran Reference Guide!
overs all of OpenMP 5.1/5.2!

OpenMP AP15.1 WWW.0pEnmp.org MP APIS.1 W ™ p.or]
openmp.arg

OpenMP 5.1 APl Syntax Reference Guide Directives and Constructs (continued)
en The OpenMP* AP is 3 portable, scaiable Fartran. OpenMP is suitable for 2 wide range
— madel that gives parallel programmers 2 of algorithms running & nodes masked construct workshare (210,352 far simd and do sim 13121
s o 5 e terationscf

openmp.org Smele and fiexible interface for developing and chips, NUMA sy
P p-org portabie parallel applications in C/C++and such devices attached to a CPU . rotlback tht i sascurtnd by
Ej am. [

[runn]Sectionsin 5.1, + Deprecated
non.n) Sectiansin 5.0, » Dey

loop.
15emp ead dosimd fnowait]

clouse: Ay of B catas actepted by e simd, b, or
o drecmes.

Cpe cors ock of executable statemerts with 1 siage en ! B—]

pear in Fartran PURE procedares : W\]rkshinng—\unp construct

. " " hrard do riajze

Variant directives Informational and utility directives e ofa et locgs will
i = arahe b teasds i ha

metadirective s m
§ : - e . " ipragma omg for (cio.

e o it single it e herm. CenMP e d rectve mayn
clare simd [z
o ta 3 function

wompiation execsbon|
severityffaal | wamisgl
maszape| g sining]

i aeah i, adacea,_ ot 3 el]
dynamic_alocators parallel construct
st imglmer

by e Bk
parlel 25 5o cope o
nes F threads that eseoute the o
ot
Tedecton

assumes and assume |
P Iartants p the Implementation that may be ad - “
forcpmmizanon porposes y ! o e et 1o threads distribute loop constructs
Decares 3 pactand tan of 2 on function s the Sprogr np aumas couse [1 mse] ety Worksharing constructs pramic Exch et emcatess ok f s SlStlbUtE maganany
i w o it spectes cops which are exscted by the il tgams

mp dedart vt e 11 prgrs g e e | . + guide: Each thead ecutes 3 chun af herations
s of e be and then requests another sk untl no chunks remain
Spragma omp e e cred ced by the theaths e g Chunka e)
i eacn chunk smale han e it
autor CEm,\NJni-ﬂL bme decides

et e schedvor K.
ues for schadule e

mamataric: Each tewad

F s ssgredin maezing

ou

 definkion or deciaration

mp oy e

g e dachre arians

o
:suu«namualim(base- grox. .
vaniont pr = 1 e I T
tian : chuse + nORmonOtnic: Chunks ane Jsugned

that depends on esecatian crder of the chunis s
teams construct d urspecifed
- * sk e ko ooy et bt
Reams 11 o .
Creesa beaguie of miial tears wheve the intal hread of
am eswcanes the regan, piae
» . jemest . 150mp distribste sime Jclowse | s
redection Some dlil o

Frre it . et
append_angs {anpend opi], append ap
nathing. nees_deiice_pir
erup e
The e f facaon san st .
2 e am e, e s] pragma cmpteams i
e rame of 3 furction varart i Aractues lock) ' mp end
|.|,-1!Eh uage dentrher. enimg: [mm: Caus .
guge sanp CTRise v o o GaUL aCCEpaed B A o T

dispatch 214 2
Contets whather artant sabsmuin scurs o a grenc . ol A - lcpta e distribuite parallel for and
e e 35

jaousef [Jeguse) | Lazan

apma omg disath cinuse | [couse
egresion s nothing|
edicates exphcrly -3t the e I b have nc e

{semp e e 1)
spragma ampnathing rton
! i, cinuse] . Jend. couse]

e

depend |[Hepens macifie, | dependence-4rpe ocstor st amp nething

et g ot nicuiry . S o st el
— bt ek 2k : CTise- i Sccupied by the GEETBUTE.

[wer b~
hresd, e
parabel &0 drectves

Ehoead_imit {scoior

Frstprivate V=)

appebae i) nova
end_ciouce: copyprine |

© 2020 Open® AR

Programming the OpenMP API
Introduction

OpenMIP

OpenMP API Specification & Examples

\
Application Pro . I L Applicati

e gramm Il Sl Plication Pr
Specification Version sl.;g e H | Version 5,2

e i OpenMP Examples |

0gramming Interface

https://link.openmp.org/book52 https://link.openmp.org/examples521
https://link.openmp.org/tril

Programming the OpenMP API
Introduction

Recent Books About OpenMP OpenMP

y

USING OPENMP-
THE NEXT STEP "=

Affinity, Accelerators, Tasking, and SIMD

THE OPENMP
COMMON CORE

Making OpenMP Simple Again

c
Ny
z
@
(@)
)
m
z
Z
)
|
-
I
m
z
m
x
A
v
=
m
o

-
L
m
o
)
m
rd
=
o
0
]
=
=
o
>3
)
S
m

Ruud van der Pas, Eric Stotzer,

and Christian Terboven
Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

A book that covers all of the A new book about the OpenMP
OpenMP 4.5 features, 2017 Common Core, 2019

7 Programming the OpenMP API
Introduction

OpenMP Roadmap OpenMP

 Roadmap for the releases of the OpenMP API

— 5-year cadence for major releases, one minor release in between

Version | Year

— OpenMP 5.2 was an additional release before OpenMP version 6.0 --

— (At least) one Technical Report (TR) with feature previews in every year --

TR11 TR12
OpenMP 5.1 OpenMP 5.2 OpenMP 6.0 ¢ OpenMP 6.x
Nov’20 Nov’'21 Nov’22 Nov’23 Nov’'24 Nov’25 Nov’26
Public Comment Public Comment Public Comment
Draft (TR10) Draft (TR13*) Draft (TR15*)

You are here.

Programming the OpenMP API
Introduction

OpenMIP
Programming the OpenMP API

Parallel Region

OpenMIP

OpenMP‘s machine model

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

10 Programming the OpenMP API
Introduction

The OpenMP Memory Model

e All threads have access to private
the same, globally shared R
memory

« Data in private memory is
only accessible by the thread
owning this memory

accelerator

Sharee:. ..\ “memon
Memory

private

 No other thread sees the private memory

change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application memory

11 Programming the OpenMP API
Introduction

The OpenMP Execution Model

 OpenMP programs start with
just one thread: the Primary Thread.

 Worker threads are spawned
at Parallel Regions, together
with the primary thread they form the
Team of threads.

* In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

* Concept: Fork-Join.
* Allows for an incremental parallelization!

12 Programming the OpenMP API
Introduction

Primary Thread

Worker
Threads

3

<IIIIIIIIIIIIIIIIIIIII

OpenMIP

Serial Part

Parallel
Region

Serial Part

Parallel
Region

Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.

OpenMIP

C/C++

fpragma omp parallel
{

structured block

}

Fortran

!'Somp parallel
structured block

I'Somp end parallel

e Structured Block
— Exactly one entry point at the top
— Exactly one exit point at the bottom
— Branching in or out is not allowed

— Terminating the program is allowed
(abort / exit)

13 Programming the OpenMP API
Introduction

Specification of number of threads:
— Environment variable: OMP NUM THREADS=..
— Or:Vianum threads clause:

add num threads (num) tothe
parallel construct

OpenMIP

Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

* From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

14 Programming the OpenMP API
Introduction

OpenMIP

Using OpenMP Compilers

15 Programming the OpenMP API
Introduction

OpenMIP

Production Compilers w/ OpenMP Support

m GCC

B clang/LLVM

B [ntel Classic and Next-gen Compilers
B AOCC, AOMP, ROCmCC

m [BM XL

B ... and many more

B See for a list

16 Programming the OpenMP API
Introduction

https://www.openmp.org/resources/openmp-compilers-tools/

Compiling OpenMP

B Enable OpenMP via the compiler’'s command-line switches

- GCC: -fopenmp

- clang: -fopenmp

—> Intel: -fopenmp or -qopenmp (classic) or —-fiopenmp (next-gen)
- AOCC, AOCL, ROCmCC: -fopenmp

- HPE/Cray CPE: -homp

- IBM XL: -gsmp=omp

B Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o
$./matmul 1024

Sum of matrix (serial): 134217728.000000, wall time ©.413975, speed-up 1.00

OpenMIP

Sum of matrix (parallel): 134217728.000000, wall time ©0.092162, speed-up 4.49

Programming the OpenMP API
Introduction

Demo QpenMP

Hello OpenMP World

18 Programming the OpenMP API
Introduction

OpenMIP

Worksharing

19 Programming the OpenMP API
Introduction

For Worksharing

* If only the parallel construct is used, each thread executes the Structured Block.

* Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

C/C++
int 1i;
fpragma omp for

al[i] = bl1i]

for (i = 0; i < 100;

i++)

+ c[1];

Fortran

INTEGER ::

'Somp do

DO i = 0
ali]

END DO

i

;99
= bl1i]

+ c[1]

— Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

* Loops often account for most of a program’s runtime!

20 Programming the OpenMP API
Introduction

OpenMIP

Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1 |doi=0, 24
a(i) = b(i) + c(i)
end do

Thread 2 | doi = 25, 49

erta a(i) = b(i) + cfi)
d0i=0, 99 end do

a(i)=b(i) +c(i) | =g —
end do doi= 50, 74

a(i) = b(i) + c(i)
Thread 3 | end do

doi=75,99
a(i) = b(i) + c(i)
Thread 4 | end do

21 Programming the OpenMP API
Introduction

The Barrier Construct

OpenMP barrier (implicit or explicit)

— Threads wait until all threads of the current Team have reached the barrier

All worksharing constructs contain an implicit barrier at the end

C/C++

#fpragma omp barrier

Programming the OpenMP API

Introduction

OpenMIP

OpenMIP

The Single Construct

C/C++ Fortran
#fpragma omp single [clause] !'Somp single [clause]
structured block structured block
'Somp end single

 The single construct specifies that the enclosed structured block is executed by only on thread of the
team.

— Itis up to the runtime which thread that is.

e Useful for:
— 1/0
— Memory allocation and deallocation, etc. (in general: setup work)
— Implementation of the single-creator parallel-executor pattern as we will see later...

23 Programming the OpenMP API
Introduction

The Master Construct is going to be removed with OpenMP 6.0 (2025)

C/C++
B LT e e e

. structured block ...

Fortran

B L e

. sStructured block ...

iéemp—eﬁd—mas%ef

OpenMIP

The master construct specified that the enclosed structured block is executed only by the primary thread

of a team.

— Note: The master construct was no worksharing construct and does not contain an implicit barrier at the end.

Replacement: see the masked construct later on.

Programming the OpenMP API

Introduction

Demo QpenMP

Vector Addition

25 Programming the OpenMP API
Introduction

OpenMIP

Influencing the For Loop Scheduling / 1

e for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]):Similarto dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

e Defaultis schedule (static).

26 Programming the OpenMP API
Introduction

Influencing the For Loop Scheduling / 2

Static Schedule

- schedule (static [, chunk])

- Decomposition

depending on chunksize

— Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead
Cons?

- No dynamic workload balancing

27 Programming the OpenMP API
Introduction

1,2

0,8

0,6

0,4

0,2

0,1 0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

OpenMIP

Influencing the For Loop Scheduling / 3

* Dynamic schedule
— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size
— Threads request a new block after finishing the previous one
— Default chunk size is 1
* Pros?
— Workload distribution
* Cons?
— Runtime Overhead

— Chunk size essential for performance
— No NUMA optimizations possible

28 Programming the OpenMP API
Introduction

Synchronization Overview

Can all loops be parallelized with £or-constructs? No!

OpenMIP

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.

BUT: This test alone is not sufficient:

C/C++

int i, int s = 0;

#fpragma omp parallel for

for

{

S

}

(i = 0; 1 < 100;

= s + ali]l;

it++)

Data Race: If between two synchronization points at least one thread writes to a memory location from

which at least one other thread reads, the result is not deterministic (race condition).

Programming the OpenMP API

Introduction

Synchronization: Critical Region

OpenMIP

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

fpragma omp critical (name)

{

structured block

}

Do you think this solution scales well?

C/C++

int i, s = 0;

fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =s + alil; }

}

Programming the OpenMP API

Introduction

OpenMIP

Scoping

31 Programming the OpenMP API
Introduction

OpenMIP

Scoping Rules

* Managing the Data Environment is the challenge of OpenMP.

* Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.
— Loop control variables on for-constructs are private []
— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
 firstprivate: Initialization with the value before encountering the construct
* |astprivate: Value of last loop iteration is written back to the variable in the primary thread

— Static variables are shared

32 Programming the OpenMP API
Introduction

Privatization of Global/Static Variables

Global / static variables can be privatized with the threadprivate directive

— Oneinstance is created for each thread

» Before the first parallel region is encountered

* Instance exists until the program ends

* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
* TIsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword thread (GNU extension)

C/C++

static int 1i;
#fpragma omp threadprivate (i)

Fortran

SAVE INTEGER :: 1
!'Somp threadprivate (1)

Programming the OpenMP API

Introduction

OpenMIP

OpenMIP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive ‘e
— Oneinstance is created for each thread °

* Before the first parallel region is encountered 6Q‘\
* Instance exists until the program ends ez
* Does not work (well) with nested Parallel Region ‘X\‘

— Based on thread-local storage (TLS) 0& \

* TIsAlloc (Win32-Threads), pthread key create (P@,%re%‘@%/\'/vord ___thread (GNU extension)

S 2
\
0'\6“'0. 40
C/C++ @Q ‘0\,\ Fortran
static int 1i; \,0 S SAVE INTEGER :: i
* ao (1) 'Somp threadprivate (i)

#prag;\;\ {}(

Q&

34 Programming the OpenMP API
Introduction

Programming the OpenMP API
Introduction

Back to our example

C/C++

int 1, s = 0;

fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#fpragma omp critical
{ s = s + alil; }

}

OpenMIP

It's your turn: Make It Scale! QpenMP

#pragma omp parallel

doi=0,24
{ s =s+a(i)
end do
#pragma omp for doi=25,49
for (1 = 0; 1 < 99; i++) s=s+ afi)
{ doi=0,99 end do
s=s+a(i) | =P
s = s 4+ a[il]; end do \ doi=>50,74
’ s=s+a(i)
end do
}
doi=75,99
s=s+ali)
} // end parallel end do

36 Programming the OpenMP API
Introduction

(done)

#pragma omp parallel

{

double ps = 0.0; // private variable

#pragma omp for
for (1 = 0; 1 < 99; i++)
{
ps = ps + ali];
}

#pragma omp critical

{
S += pPS;

}
} // end parallel

37 Programming the OpenMP API
Introduction

OpenMIP

doi=0, 24

s, =5, +ali)
end do
S=s+5s,;

doi=0,99
s=s+ ai
end do

doi =25, 49
s, =5, +ali)

end do

S=S+5,

doi =50, 74
S3 = S5 + a(i)

end do

S=S+5,

doi=75,99
S, =S, + ali)

end do

S=s+s,

The Reduction Clause

— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++
int 1, s = 0;

fpragma omp parallel for reduction(+:s)
for(i = 0; i < 99; i++)
{

s = s + al[i]l;

}

— Possible reduction operators with initialization value:

+ (0),

(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

Introduction

*

(1)/ - (O)r &

maxXx

(NO)/ | (O)/ & &
(least number)

Programming the OpenMP API

(1),

OpenMIP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.

Example QpenMP

Pi

39 Programming the OpenMP API
Introduction

Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const double fH =1.0/(double) n;
double fSum = 0.0;
double fX;
int i;

#pragma omp parallel for
for (i=0; i <n; i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

Programming the OpenMP API
Introduction

4
1+ x?
T4
85
1
I 25
hhhh L
\1.5
{1
ns
0

0.5

Example: Pi (2/2) OpenMP

double f(double x))

{ 4
return (4.0 / (1.0 + x*x)); T = j

} 1+ x?

0

double CalcPi (int n)

{ 4t =y T T J4
const double fH =1.0/ (double) n; . / L.
double fSum = 0.0; .
double X; I h, T
int i; 251 "\\ 125

2t H".. {2

#pragma omp parallel for private(fX,i) reduction(+:fSum) el \1 .
for (i=0;i<n;i+t) ' '
{ Tt 41

fX =fH * ((double)i + 0.5); 05} {05
fSum += f(fX); 0 0
} -0.5 0 05 1 15

return fH * fSum;

}

41 Programming the OpenMP API
Introduction

Demo QpenMP

Pi

42 Programming the OpenMP API
Introduction

	Programming the OpenMP API
	Credits…
	History
	What is OpenMP?
	Slide Number 5
	Slide Number 6
	Slide Number 7
	OpenMP Roadmap
	Programming the OpenMP API
	OpenMP‘s machine model
	The OpenMP Memory Model
	The OpenMP Execution Model
	Parallel Region and Structured Blocks
	Starting OpenMP Programs on Linux
	
	Slide Number 16
	Slide Number 17
	Slide Number 18
	
	For Worksharing
	Worksharing illustrated
	The Barrier Construct
	The Single Construct
	The Master Construct is going to be removed with OpenMP 6.0 (2025)
	Slide Number 25
	Influencing the For Loop Scheduling / 1
	Slide Number 27
	Influencing the For Loop Scheduling / 3
	Synchronization Overview
	Synchronization: Critical Region
	
	Scoping Rules
	Privatization of Global/Static Variables
	Privatization of Global/Static Variables
	Back to our example
	Slide Number 36
	Slide Number 37
	The Reduction Clause
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42

