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History

* De-facto standard for Shared-Memory Parallelization.

e 1997: OpenMP 1.0 for FORTRAN Open M P

 1998: OpenMP 1.0 for Cand C++
e 1999: OpenMP 1.1 for FORTRAN
e 2000: OpenMP 2.0 for FORTRAN
e 2002: OpenMP 2.0 for Cand C++
e 2005: OpenMP 2.5 now includes both programming languages.

 05/2008: OpenMP 3.0
« 07/2011: OpenMP 3.1

 07/2013: OpenMP 4.0
« 11/2015: OpenMP 4.5

« 11/2018: OpenMP 5.0
« 11/2020: OpenMP 5.1
« 11/2021: OpenMP 5.2

http://www.OpenMP.org
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What is OpenMP?

Parallel Region & Worksharing

Tasking

SIMD / Vectorization

Accelerator Programming
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OpenMP API Specification & Examples

\
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Recent Books About OpenMP OpenMP

y

USING OPENMP-
THE NEXT STEP "=

Affinity, Accelerators, Tasking, and SIMD

THE OPENMP
COMMON CORE

Making OpenMP Simple Again
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Ruud van der Pas, Eric Stotzer,

and Christian Terboven
Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

A book that covers all of the A new book about the OpenMP
OpenMP 4.5 features, 2017 Common Core, 2019
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OpenMP Roadmap OpenMP

 Roadmap for the releases of the OpenMP API

— 5-year cadence for major releases, one minor release in between

Version | Year

— OpenMP 5.2 was an additional release before OpenMP version 6.0 --

— (At least) one Technical Report (TR) with feature previews in every year --

TR11 TR12
OpenMP 5.1 OpenMP 5.2 OpenMP 6.0 ¢ OpenMP 6.x
Nov’20 Nov’'21 Nov’22 Nov’23 Nov’'24 Nov’25 Nov’26
Public Comment Public Comment Public Comment
Draft (TR10) Draft (TR13*) Draft (TR15*)

You are here.
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OpenMP‘s machine model

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.
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The OpenMP Memory Model

e All threads have access to private
the same, globally shared R
memory

« Data in private memory is
only accessible by the thread
owning this memory

accelerator

Sharee:. ..\  “memon
Memory

private

 No other thread sees the private memory

change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application memory
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The OpenMP Execution Model

 OpenMP programs start with
just one thread: the Primary Thread.

 Worker threads are spawned
at Parallel Regions, together
with the primary thread they form the
Team of threads.

* In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

* Concept: Fork-Join.
* Allows for an incremental parallelization!

12 Programming the OpenMP API
Introduction

Primary Thread

Worker
Threads

3

<IIIIIIIIIIIIIIIIIIIII

OpenMIP

Serial Part

Parallel
Region

Serial Part

Parallel
Region



Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.

OpenMIP

C/C++

fpragma omp parallel
{

structured block

}

Fortran

!'Somp parallel
structured block

I'Somp end parallel

e Structured Block
— Exactly one entry point at the top
— Exactly one exit point at the bottom
— Branching in or out is not allowed

— Terminating the program is allowed
(abort / exit)

13 Programming the OpenMP API
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Specification of number of threads:
— Environment variable: OMP NUM THREADS=..
— Or:Vianum threads clause:

add num threads (num) tothe
parallel construct
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Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

* From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program
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Using OpenMP Compilers
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Production Compilers w/ OpenMP Support

m GCC

B clang/LLVM

B [ntel Classic and Next-gen Compilers
B AOCC, AOMP, ROCmCC

m [BM XL

B ... and many more

B See for a list
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https://www.openmp.org/resources/openmp-compilers-tools/

Compiling OpenMP

B Enable OpenMP via the compiler’'s command-line switches

- GCC: -fopenmp

- clang: -fopenmp

—> Intel: -fopenmp or -qopenmp (classic) or —-fiopenmp (next-gen)
- AOCC, AOCL, ROCmCC: -fopenmp

- HPE/Cray CPE: -homp

- IBM XL: -gsmp=omp

B Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o
$./matmul 1024

Sum of matrix (serial): 134217728.000000, wall time ©.413975, speed-up 1.00

OpenMIP

Sum of matrix (parallel): 134217728.000000, wall time ©0.092162, speed-up 4.49
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Demo QpenMP

Hello OpenMP World
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Worksharing
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For Worksharing

* If only the parallel construct is used, each thread executes the Structured Block.

* Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

C/C++
int 1i;
fpragma omp for

al[i] = bl1i]

for (i = 0; i < 100;

i++)

+ c[1];

Fortran

INTEGER ::

'Somp do

DO i = 0
ali]

END DO

i

;99
= bl1i]

+ c[1]

— Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

* Loops often account for most of a program’s runtime!
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Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1 |doi=0, 24
a(i) = b(i) + c(i)
end do

Thread 2 | doi = 25, 49

erta a(i) = b(i) + cfi)
d0i=0, 99 end do

a(i)=b(i) +c(i) | =g —
end do doi= 50, 74

a(i) = b(i) + c(i)
Thread 3 | end do

doi=75,99
a(i) = b(i) + c(i)
Thread 4 | end do
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The Barrier Construct

OpenMP barrier (implicit or explicit)

— Threads wait until all threads of the current Team have reached the barrier

All worksharing constructs contain an implicit barrier at the end

C/C++

#fpragma omp barrier

Programming the OpenMP API
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The Single Construct

C/C++ Fortran
#fpragma omp single [clause] !'Somp single [clause]
structured block ... ... structured block
'Somp end single

 The single construct specifies that the enclosed structured block is executed by only on thread of the
team.

— Itis up to the runtime which thread that is.

e Useful for:
— 1/0
— Memory allocation and deallocation, etc. (in general: setup work)
— Implementation of the single-creator parallel-executor pattern as we will see later...
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The Master Construct is going to be removed with OpenMP 6.0 (2025)

C/C++
B LT e e e

. structured block ...

Fortran

B L e

. sStructured block ...

iéemp—eﬁd—mas%ef

OpenMIP

The master construct specified that the enclosed structured block is executed only by the primary thread

of a team.

— Note: The master construct was no worksharing construct and does not contain an implicit barrier at the end.

Replacement: see the masked construct later on.
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Demo QpenMP

Vector Addition
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Influencing the For Loop Scheduling / 1

e for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]):Similarto dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

e Defaultis schedule (static).
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Influencing the For Loop Scheduling / 2

Static Schedule

- schedule (static [, chunk])

- Decomposition

depending on chunksize

— Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead
Cons?

- No dynamic workload balancing
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Influencing the For Loop Scheduling / 3

* Dynamic schedule
— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size
— Threads request a new block after finishing the previous one
— Default chunk size is 1
* Pros?
— Workload distribution
* Cons?
— Runtime Overhead

— Chunk size essential for performance
— No NUMA optimizations possible
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Synchronization Overview

Can all loops be parallelized with £or-constructs? No!

OpenMIP

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.

BUT: This test alone is not sufficient:

C/C++

int i, int s = 0;

#fpragma omp parallel for

for

{

S

}

(i = 0; 1 < 100;

= s + ali]l;

it++)

Data Race: If between two synchronization points at least one thread writes to a memory location from

which at least one other thread reads, the result is not deterministic (race condition).
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Synchronization: Critical Region

OpenMIP

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

fpragma omp critical (name)

{

structured block

}

Do you think this solution scales well?

C/C++

int i, s = 0;

fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =s + alil; }

}

Programming the OpenMP API
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Scoping
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Scoping Rules

* Managing the Data Environment is the challenge of OpenMP.

* Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.
— Loop control variables on for-constructs are private [ ]
— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
 firstprivate: Initialization with the value before encountering the construct
* |astprivate: Value of last loop iteration is written back to the variable in the primary thread

— Static variables are shared

32 Programming the OpenMP API
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Privatization of Global/Static Variables

Global / static variables can be privatized with the threadprivate directive

— Oneinstance is created for each thread

» Before the first parallel region is encountered

* Instance exists until the program ends

* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
* TIsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword  thread (GNU extension)

C/C++

static int 1i;
#fpragma omp threadprivate (i)

Fortran

SAVE INTEGER :: 1
!'Somp threadprivate (1)

Programming the OpenMP API
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Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive ‘e
— Oneinstance is created for each thread °

* Before the first parallel region is encountered 6Q‘\
* Instance exists until the program ends ez
* Does not work (well) with nested Parallel Region ‘X\‘

— Based on thread-local storage (TLS) 0& \

* TIsAlloc (Win32-Threads), pthread key create (P@,%re%‘@%/\'/vord ___thread (GNU extension)

S 2
\
0'\6“'0. 40
C/C++ @Q ‘0\,\ Fortran
static int 1i; \,0 S SAVE INTEGER :: i
* ao (1) 'Somp threadprivate (i)

#prag;\;\ {}(

Q&
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Back to our example

C/C++

int 1, s = 0;

fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#fpragma omp critical
{ s = s + alil; }

}

OpenMIP




It's your turn: Make It Scale! QpenMP

#pragma omp parallel

doi=0,24
{ s =s+a(i)
end do
#pragma omp for doi=25,49
for (1 = 0; 1 < 99; i++) s=s+ afi)
{ doi=0,99 end do
s=s+a(i) | =P
s = s 4+ a[il]; end do \ doi=>50,74
’ s=s+a(i)
end do
}
doi=75,99
s=s+ali)
} // end parallel end do
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(done)

#pragma omp parallel

{

double ps = 0.0; // private variable

#pragma omp for
for (1 = 0; 1 < 99; i++)
{
ps = ps + ali];
}

#pragma omp critical

{
S += pPS;

}
} // end parallel

37 Programming the OpenMP API
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doi=0, 24

s, =5, +ali)
end do
S=s+5s,;

doi=0,99
s=s+ ai
end do

doi =25, 49
s, =5, +ali)

end do

S=S+5,

doi =50, 74
S3 = S5 + a(i)

end do

S=S+5,

doi=75,99
S, =S, + ali)

end do

S=s+s,




The Reduction Clause

— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++
int 1, s = 0;

fpragma omp parallel for reduction(+:s)
for(i = 0; i < 99; i++)
{

s = s + al[i]l;

}

— Possible reduction operators with initialization value:

+ (0),

(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

Introduction

*

(1)/ - (O)r &

maxXx

(NO)/ | (O)/ & &
(least number)

Programming the OpenMP API

(1),

OpenMIP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.



Example QpenMP

Pi
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Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const double fH =1.0/(double) n;
double fSum = 0.0;
double fX;
int i;

#pragma omp parallel for
for (i=0; i <n; i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

Programming the OpenMP API
Introduction
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Example: Pi (2/2) OpenMP

double f(double x) )

{ 4
return (4.0 / (1.0 + x*x)); T = j

} 1+ x?

0

double CalcPi (int n)

{ 4t =y T T J4
const double fH =1.0/ (double) n; . / L.
double fSum = 0.0; .
double X; I h, T
int i; 251 "\\ 125

2t H".. {2

#pragma omp parallel for private(fX,i) reduction(+:fSum) el \1 .
for (i=0;i<n;i+t) ' '
{ Tt 41

fX =fH * ((double)i + 0.5); 05} {05
fSum += f(fX); 0 0
} -0.5 0 05 1 15

return fH * fSum;

}
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Demo QpenMP

Pi
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