HLRS-OpenMP-GPU-2024/04-matmul/matmul.c

175 lines
4.9 KiB
C
Raw Normal View History

2024-04-26 13:47:20 +00:00
//===-- matmul.c - Different implementations of matrix multiplies -*- C -*-===//
//
// Part of the LOMP Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define N 3072
#define DUMP_MATRIX 0
#define DUMP_TASKS 0
void matmul_seq(float * C, float * A, float * B, size_t n) {
for (size_t i = 0; i < n; ++i) {
for (size_t k = 0; k < n; ++k) {
for (size_t j = 0; j < n; ++j) {
C[i * n + j] += A[i * n + k] * B[k * n + j];
}
}
}
}
void matmul_par(float * C, float * A, float * B, size_t n) {
#pragma omp parallel for schedule(static,8) firstprivate(n)
for (size_t i = 0; i < n; ++i) {
for (size_t k = 0; k < n; ++k) {
for (size_t j = 0; j < n; ++j) {
C[i * n + j] += A[i * n + k] * B[k * n + j];
}
}
}
}
void matmul_tloop(float * C, float * A, float * B, size_t n) {
#pragma omp parallel firstprivate(n)
#pragma omp single nowait
#pragma omp taskloop
for (size_t i = 0; i < n; ++i) {
for (size_t k = 0; k < n; ++k) {
for (size_t j = 0; j < n; ++j) {
C[i * n + j] += A[i * n + k] * B[k * n + j];
}
}
}
}
void matmul_task(float * C, float * A, float * B, size_t n) {
const size_t bf = 256;
if (n % bf != 0) {
printf("Blocking factor does not divide matrix size!\n");
exit(EXIT_FAILURE);
}
#pragma omp parallel firstprivate(n, bf)
#pragma omp master
{
// work on the blocks of the matrix
for (size_t ib = 0; ib < n; ib += bf)
for (size_t kb = 0; kb < n; kb += bf)
for (size_t jb = 0; jb < n; jb += bf) {
#pragma omp task firstprivate(ib, kb, jb) firstprivate(n, bf) \
depend(inout:C[ib * n + jb:bf]) \
depend(in:A[ib * n + kb:bf]) \
depend(in:B[kb * n + jb:bf])
{
#if DUMP_TASKS
printf("task: C[%ld,%ld] += A[%ld,%ld] o B[%ld,%ld]\n", ib, jb, ib, kb, kb, jb);
#endif
// work on a single block``
for (size_t i = ib; i < (ib + bf); ++i)
for (size_t k = kb; k < (kb + bf); ++k)
for (size_t j = jb; j < (jb + bf); ++j)
C[i * n + j] += A[i * n + k] * B[k * n + j];
}
}
}
}
void init_mat(float * C, float * A, float * B, size_t n) {
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < n; ++j) {
C[i * n + j] = 0.0;
A[i * n + j] = 0.5;
B[i * n + j] = 0.25;
}
}
}
void dump_mat(float * mtx, size_t n) {
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < n; ++j) {
printf("%f ", mtx[i * n + j]);
}
printf("\n");
}
}
float sum_mat(float * mtx, size_t n) {
float sum = 0.0;
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < n; ++j) {
sum += mtx[i * n + j];
}
}
return sum;
}
int main(int argc, char * argv[]) {
double ts, te;
double t_seq;
float * C;
float * A;
float * B;
// If number of arguments is not 1, print help
if (argc != 2) {
printf("%s: matrix_size\n", argv[0]);
return EXIT_FAILURE;
}
const int n = atoi(argv[1]); // matrix size
C = (float *) malloc(sizeof(*C) * n * n);
A = (float *) malloc(sizeof(*A) * n * n);
B = (float *) malloc(sizeof(*B) * n * n);
init_mat(C, A, B, n);
ts = omp_get_wtime();
matmul_seq(C, A, B, n);
te = omp_get_wtime();
#if DUMP_MATRIX
dump_mat(C, n);
#endif
t_seq = te - ts;
printf("Sum of matrix (serial): %f, wall time %lf, speed-up %.2lf\n",
sum_mat(C, n), (te-ts), t_seq / (te-ts));
init_mat(C, A, B, n);
ts = omp_get_wtime();
matmul_par(C, A, B, n);
te = omp_get_wtime();
#if DUMP_MATRIX
dump_mat(C, n);
#endif
printf("Sum of matrix (parallel): %f, wall time %lf, speed-up %.2lf\n",
sum_mat(C, n), (te-ts), t_seq / (te-ts));
init_mat(C, A, B, n);
ts = omp_get_wtime();
matmul_tloop(C, A, B, n);
te = omp_get_wtime();
#if DUMP_MATRIX
dump_mat(C, n);
#endif
printf("Sum of matrix (taskloop): %f, wall time %lf, speed-up %.2lf\n",
sum_mat(C, n), (te-ts), t_seq / (te-ts));
init_mat(C, A, B, n);
ts = omp_get_wtime();
matmul_task(C, A, B, n);
te = omp_get_wtime();
#if DUMP_MATRIX
dump_mat(C, n);
#endif
printf("Sum of matrix (tasks): %f, wall time %lf, speed-up %.2lf\n",
sum_mat(C, n), (te-ts), t_seq / (te-ts));
return EXIT_SUCCESS;
}