When we changed how to deal with errors in November,
we didn't realize that for an unconstrained choice
rule it is more important in the heuristic to guess
what is NOT in the answer set, since it will be the
majority of options.
Previously this was following automatically from what
was in the answer set, via `1 { ... } 1` cardinality
constraints.
Here we improve the heuristic and the solve time for specs.
#40773 introduced python-venv, which improved build isolation and avoids issues with,
e.g., `ubuntu`'s system python modifying `sysconfig` to include a (very unwanted)
`local` directory within the default install layout.
This addresses a few cases where #40773 removed functionality, without harming the
default cases where we use `python-venv`.
Traditionally, *every* view with `python` in it was essentially a virtual environment,
because we would copy the `python` interpreter and `os.py` into every view when linking.
We now rely on `python-venv` to do that, but only when it's used (i.e. new builds) and
only for packages that have an `extends("python")` directive.
This again makes every view with `python` in it a virtual environment, but only
if we're not already using a package like `python-venv`. This uses a different
mechanism from before -- instead of using the `virtualenv` trick of copying `python`
into the prefix, we instead create a `pyvenv.cfg` like `venv` (the more modern way
to do it).
This fixes two things:
1. If you already had an environment before Spack `v0.22` that worked, it would
stop working without a reconcretize and rebuild in `v0.22`, because we no longer
copy the python interpreter on link. Adding `pyvenv.cfg` fixes this in a more
modern way, so old views will keep working.
2. If you have an env that only includes python packages that use `depends_on("python")`
instead of `extends("python")`, those packages will now be importable as before,
though they won't have the same level of build isolation you'd get with `extends`
and `python-venv`.
* views: avoid making client code deal with link functions
Users of views and ViewDescriptors shouldn't have to deal with link functions -- they
should just say what type of linking they want.
- [x] views take a link_type, not a link function
- [x] views work out the link function from the link type
- [x] view descriptors and commands now just tell the view what they want.
* python: simplify logic for avoiding pyvenv.cfg in copy views
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Add support for Gitlab CI on Windows
This PR adds the config changes required to configure and execute
Gitlab pipelines running Windows builds on Windows runners using
the existing Gitlab CI infrastructure (and newly added Windows
infrastructure).
* Adds support for generating child pipelines dispatched to Windows runners
* Refactors the relevant pre-scripts, scripts, and post scripts to be compatible with Windows
* Adds Windows config section describing Windows jobs
* Adds VTK as Windows build stack (to be expanded later)
* Modifies proj to build on Windows
* Refactors Windows rpath symlinking to avoid system libs and externals
---------
Co-authored-by: Ryan Krattiger <ryan.krattiger@kitware.com>
Co-authored-by: Mike VanDenburgh <michael.vandenburgh@kitware.com>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Co-authored-by: Scott Wittenburg <scott.wittenburg@kitware.com>
* archive: relative links only
Ensure all links written into tarfiles generated from Spack prefixes do not contain symlinks pointing outside the prefix
* binary_distribution: limit extraction to prefix
Ensure files extracted from spackballs are not links pointing outside of the prefix
* Ensure rpaths are properly set on Windows
* hard error on extraction of absolute links
* refactor for non link-modifying approach
* Restore tarball extraction to original impl
* use custom readlink
* cleanup symlink module
* make lstrip
Symlinks on Windows can use longpath prefixes (\\?\); these are fine
in the context of win32 API interactions but break numerous facets of
Spack behavior that rely on string parsing/matching (archiving,
binary distributions, tarball extraction, view regen, etc).
Spack's internal readlink method (llnl.util.symlink.readlink)
gracefully handles this by removing the prefix and otherwise behaving
exactly as os.readlink does, so we should prefer that in all cases.
Use correct path separator in get_all_package_diffs for all platforms.
Ensures correct package change computation on Windows when pruning unchanged specs in Gitlab CI
Before this PR, if Spack could see a possibility to reuse a spec that
doesn't match a strong preference, it would do so. After the PR, a
strong preference would take precedence.
avoid calling `spec.target` when None.
When an external compiler package has an `os` set but no `target` set, Spack
currently falls into a codepath that calls `spec.target` (which itself calls
`spec.architecture.target.Microarchitecture`) when `spec.architecture.target`
is None, throwing an error.
e.g.
```
packages:
gcc:
externals:
- spec: gcc@12.3.1 os=rhel7
prefix: /usr
```
---------
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
This fixes a bug occurring when two root specs need to select
old versions, and these versions have the same penalty in the
optimization. This sometimes caused an older version to be
preferred to a more recent one.
The issue was the omission of `PackageNode` in the optimization
tuple.
This fixes an issue where ghcr, gitlab and possibly other container registries paginate tags by default, which violates the OCI spec v1.0, but is common practice (the spec was broken itself). After this commit, you can create build cache indices of > 100 specs on ghcr.
Co-authored-by: Harmen Stoppels <me@harmenstoppels.nl>
Apparently urllib can throw a range of different exceptions:
1. HTTPError
2. URLError with e.reason set to the actual exception
3. TimeoutError from getresponse, which is not wrapped
Add the ability to include any number of (potentially nested) concrete environments, e.g.:
```yaml
spack:
specs: []
concretizer:
unify: true
include_concrete:
- /path/to/environment1
- /path/to/environment2
```
or, from the CLI:
```console
$ spack env create myenv
$ spack -e myenv add python
$ spack -e myenv concretize
$ spack env create --include-concrete myenv included_env
```
The contents of included concrete environments' spack.lock files are
included in the environment's lock file at creation time. Any changes
to included concrete environments are only reflected after the environment
is re-concretized from the re-concretized included environments.
- [x] Concretize included envs
- [x] Save concrete specs in memory by hash
- [x] Add included envs to combined env's lock file
- [x] Add test
- [x] Update documentation
Co-authored-by: Kayla Butler <<butler59@llnl.gov>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.co
m>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Currently SPACK_COLOR=always is not respected in the build process on
macOS, because the global `_force_color` is re-evaluated in global scope
during module setup, where it is always `None`.
So, move global init bits from main.py to the module itself.
Some specs which were excluded from reuse,
are currently added back to the solve when
we traverse dependencies of other reusable
specs.
This fixes the issue by keeping track of what
we can explicitly reuse.
This commit adds a layer of indirection to improve build isolation with
and without external Python, as well as usability of environment views.
It adds `python-venv` as a dependency to all packages that `extends("python")`,
which has the following advantages:
1. Build isolation: only `PYTHONPATH` is considered in builds, not
user / system packages
2. Stable install layout: fixes the problem on Debian, RHEL and Fedora where
external / system python produces `bin/local` subdirs in Spack install prefixes.
3. Environment views are Python virtual environments (and if you add
`py-pip` things like `pip list` work)
Views work whether they're symlink, hardlink or copy type.
This commit additionally makes `spec["python"].command` return
`spec["python-venv"].command`. The rationale is that packages in repos we do
not own do not pass the underlying python to the build system, which could still
result in incorrectly computed install layouts.
Other attributes like `libs`, `headers` should be on `python` anyways and need no change.
Currently bootstrapping from source fails because clingo requires gnupg
requires clingo.
This commit stops eager bootstrapping. We don't need `patchelf` nor `gnupg`
generally. They're bootstrapped when needed.
This creates shared infrastructure for compiler packages to implement the
detailed search capabilities from the `spack compiler find` command for the
`spack external find` command.
After this commit, `spack compiler find` can be replaced with
`spack external find --tag compiler`, with the exception of mixed toolchains.
A named env cannot contain `.` and `/`.
So when a user runs `spack env create ./here` do not error but treat it
as `spack env create -d ./here`.
Also fix help string of `spack env create`, which seems to have been
copied from `activate` incorrectly.
Since reuse is the default now, `--reuse-deps` can be confusing, as it
technically does not imply roots are fresh.
So add `--fresh-roots`, which is also easier to discover when running
`spack concretize --fre<tab>`
We recently switched to using the new ReadTheDocs with "addons". That includes its own
analytics, which is nice, but we also want to continue using our GA4 analytics.
Adding GA4 is no longer supported by RTD, so we have to add it manually.
- [x] re-add the gtag to all pages, manually
Signed-off-by: Todd Gamblin <tgamblin@llnl.gov>
Adds a pre-concretization check for the Windows SDK and WGL (Windows
GL) packages as non-buildable externals.
This is a redo of https://github.com/spack/spack/pull/43459, but makes
sure to modify the configuration scope outside of the bootstrap scope:
whichever is highest-precedence in the user's environment at the time
the concretization runs, which should either be an env scope or the
~ scope.
Adds pytest fixture mocking the check for WGL and WSDK as if they were
present.
This PR gives users finer control over which specs are reused during concretization.
The value of the `concretizer:reuse` config option now can take an object with the following properties:
- `roots`: true if reusing roots, false if reusing just dependencies
- `exclude`: list of constraints used to select reusable specs
- `include`: list of constraints used to select reusable specs
- `from`: allows to select the sources of reused specs
### Examples
#### Reuse only specs compiled with GCC
```yaml
concretizer:
reuse:
roots: true
include:
- "%gcc"
```
#### `openmpi` must be used from externals, and it must be the only external used
```yaml
concretizer:
reuse:
roots: true
from:
- type: local
exclude:
- "openmpi"
- type: buildcache
exclude:
- "openmpi"
- type: external
include:
- "openmpi"
```