Minimizing builds is tricky. We want a minimizing criterion because
we want to reuse the avaialble installs, but we also want things that
have to be built to stick to *default preferences* from the package
and from the user. We therefore treat built specs differently and
apply a different set of optimization criteria to them. Spack's *first*
priority is to reuse what it can, but if it builds something, the built
specs will respect defaults and preferences.
This is implemented by bumping the priority of optimization criteria
for built specs -- so that they take precedence over the otherwise
topmost-priority criterion to reuse what is installed.
The scheme relies on all of our optimization criteria being minimizations.
That is, we need the case where all specs are reused to be better than
any built spec could be. Basically, if nothing is built, all the build
criteria are zero (the best possible) and the number of built packages
dominates. If something *has* to be built, it must be strictly worse
than full reuse, because:
1. it increases the number of built specs
2. it must have either zero or some positive number for all criteria
Our optimziation criteria effectively sum into two buckets at once to
accomplish this. We use a `build_priority()` number to shift the
priority of optimization criteria for built specs higher.
The constraints in the `spack diff` test were very specific and assumed
a lot about the structure of what was being diffed. Relax them a bit to
make them more resilient to changes.
Make the first minimization conditional on whether `--reuse` is enabled in the solve.
If `--reuse` is not enabled, there will be nothing in the set to minimize and the
objective function (for this criterion) will be 0 for every answer set.
Many of the integrity constraints in the concretizer are there to restrict how solves are done, but
they ignore that past solves may have had different initial conditions. For example, for things
we're building, we want the allowed variants to be restricted to those currently in Spack packages,
but if we are reusing a concrete spec, we need to be flexible about names that may have existed in
old packages.
Similarly, restrictions around compatibility of OS's, compiler versions, compiler OS support, etc.
are really only about what is supported by the *current* set of compilers/build tools known to
Spack, not about what we may get from concrete specs.
- [x] restrict certain integrity constraints to only apply to packages that we need to build, and
omit concrete specs from consideration.
The OS logic in the concretizer is still the way it was in the first version.
Defaults are implemented in a fairly inflexible way using straight logic. Most
of the other sections have been reworked to leave these kinds of decisions to
optimization. This commit does that for OS's as well.
As with targets, we optimize for target matches. We also try to optimize for
OS matches between nodes. Additionally, this commit adds the notion of
"OS compatibility" where we allow for builds to depend on binaries for certain
other OS's. e.g, for macos, a bigsur build can depend on an already installed
(concrete) catalina build. One cool thing about this is that we can declare
additional compatible OS's later, e.g. CentOS and RHEL.
If we don't rename Spack will fail with:
```
ImportError: cannot bootstrap the "clingo" Python module from spec "clingo-bootstrap@spack+python %gcc target=x86_64" due to the following failures:
'spack-install' raised ValueError: Invalid config scope: 'bootstrap'. Must be one of odict_keys(['_builtin', 'defaults', 'defaults/cray', 'bootstrap/cray', 'disable_modules', 'overrides-0'])
Please run `spack -d spec zlib` for more verbose error messages
```
in case bootstrapping from binaries fails and we are
falling back to bootstrapping from sources.
ensure that none of ^intel-mkl, ^intel-mpi, and ^mkl are used, unless
the compiler is intel.
Fix bad logic in the src/src_xs/m_makespectrum.f90 file in the oxygen version.
Add the -fallow-argument-mismatch for gcc >= 10.
* scr: 3.0rc2 release, variants and deps updates
This adds 3.0rc2 release for end users to aid in testing scr for
upcoming 3.0 release.
Included in this change:
- Require most recent component versions for this release
- Add a variant for PDSH as it is now an optional dependency with
this release
- Add bbapi and datawarp (dw) variants
- bbapi_fallback variant now requires bbapi variant with latest
release
- Add variants to enable/disable examples and tests
- Add shared variant and current conflicts with ~shared
- Update cmake_args to account for added variants where needed
Additional updates:
- Add maintainers
- Use lists and for loops to clean up repetitive code involving all
components
- Use self.define and self.define_from_variant to clean up cmake_args
- Use consistent quoting throughout package
* Un-deprecate v2 and legacy
* Use new conditional variants
The Makefile expects the "other" libtool, not the GNU libtool we have in Spack.
Closes https://github.com/spack/spack/issues/26993
Co-authored-by: Bernhard Kaindl <bernhardkaindl7@gmail.com>
* trilinos: fix @13.0.1+tpetra^cuda@11
* Mark CUDA conflict with old versions and always define TPL
* trilinos: patch doesn't build so just mark as conflict
A common question from users has been how to model variants
that are new in new versions of a package, or variants that are
dependent on other variants. Our stock answer so far has been
an unsatisfying combination of "just have it do nothing in the old
version" and "tell Spack it conflicts".
This PR enables conditional variants, on any spec condition. The
syntax is straightforward, and matches that of previous features.
* GnuPG: allow bootstrapping from buildcache and sources
* Add a test to bootstrap GnuPG from binaries
* Disable bootstrapping in tests
* Add e2e test to bootstrap GnuPG from sources on Ubuntu
* Add e2e test to bootstrap GnuPG on macOS
* trilinos: add @13.2.0, and switch default to cxxstd=14
* trilinos: fix python dependency when using +ifpack or +ifpack2
* trilinos: add conflict for ~epetra +ml when @13.2.0:
* trilinos: keep 13.0.1 as the preferred version
* Update var/spack/repos/builtin/packages/trilinos/package.py
Co-authored-by: Seth R. Johnson <johnsonsr@ornl.gov>
* update
Co-authored-by: Seth R. Johnson <johnsonsr@ornl.gov>
This PR adds error message sentinels to the clingo solve, attached to each of the rules that could fail a solve. The unsat core is then restricted to these messages, which makes the minimization problem tractable. Errors that can only be generated by a bug in the logic program or generating code are prefaced with "Internal error" to make clear to users that something has gone wrong on the Spack side of things.
* minimize unsat cores manually
* only errors messages are choices/assumptions for performance
* pre-check for unreachable nodes
* update tests for new error message
* make clingo concretization errors show up in cdash reports fully
* clingo: make import of clingo.ast parsing routines robust to clingo version
Older `clingo` has `parse_string`; newer `clingo` has `parse_files`. Make the
code work wtih both.
* make AST access functions backward-compatible with clingo 5.4.0
Clingo AST API has changed since 5.4.0; make some functions to help us
handle both versions of the AST.
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>