- some commands were missed in the rollout of spack environments
- this makes all commands that need to disambiguate specs restrict the
disambiguation to installed packages in the active environment, as
users would expect
* This fixes a number of bugs:
* Patches were not properly downloaded and added to mirrors.
* Mirror create didn't respect `list_url` in packages
* Update the `spack mirror` command to add all packages in the
concretized DAG (where originally it only added the package specified
by the user). This is required in order to collect patches that are specified
by dependents. Example:
* if X->Y and X requires a patch on Y called Pxy, then Pxy will only
be discovered if you create a mirror with X.
* replace confusing --one-version-per-spec option for `spack mirror create`
with --versions-per-spec; support retrieving multiple versions for
concrete specs
* Implementation details:
* `spack mirror create` now uses regular staging logic to download files
into a mirror, instead of reimplementing it in `add_single_spec`.
* use a separate resource caching object to keep track of new
resources and already-existing resources; also accepts storing
resources retrieved from a cache (unlike the local cache)
* mirror cache object now stores resources that are considered
non-cachable, like (e.g. the tip of a branch);
* the 'create' function of the mirror module no longer traverses
dependencies since this was already handled by the 'mirror' command;
* Change handling of `--no-checksum`:
* now that 'mirror create' uses stages, the mirror tests disable
checksums when creating the mirror
* remove `no_checksum` argument from library functions - this is now
handled at the Spack-command-level (like for 'spack install')
- all multimethod tests are now run for both `multimethod` and
`multimethod-inheritor`
- do this with a parameterized fixture (pkg_name) that runs the same
tests on both
- Since early Spack versions, the SpecParser has (weirdly) been
responsible for initializing Spec fields.
- This refactors initialization to take place in Spec.__init__, as it
probably should have originally.
- This makes the code easier to read, the parser easier to understand,
and removes the use of __new__ in the parser to initialize the Spec.
- This also makes it possible to make a completely empty Spec with
`Spec()` -- this is an abstract Spec that will match anything.
* "spack install" now uses cache by default, update examples accordingly
* Replace some example packages with others
* Packing tutorial reference to "spack env" replaced with "spack build-env"
* Command line prompts in examples are shortened
* Example output (including paths) are updated to be more relevant to training environment
Update all examples that need an MPI provider to build with MPICH; reorganize so that fixing MPICH (as part of environment section) comes first in the tutorial (most examples in the tutorial use an MPI provider).
- previously, uninstall would complain if a spec was needed by an
environment.
- Now, we analyze dependents and dependent environments and simply remove
(not uninstall) specs that are needed by environments
- with no arguments, these commands will now edit or dump the
environment's `spack.yaml` file.
- users may not know where named environments live
- this makes it convenient for users to get to the spack.yaml
configuration file for their named environment.
* Update Makefile to use property methods ("build_targets"/"install_targets")
to demonstrate their usage
* Fix highlighting
* Change cbench example to ESMF:
CBench package file was changed and no longer uses the example shown in
the old docs
Scopes added with -C are now referred to as "custom scopes"
rather than "command line scopes". "command line scope" now refers
to specific config options that are set on the command line (like
"--insecure")
- default is still to use the cache, but we've added back the
`--use-cache` argument so that scripts that used it are still correct.
- `--no-cache` is stil present and is mutually exclusive with `--use-cache`
* Introduce FFTW2 and FFT3 providers for Intel-MKL and FFTW Spack packages.
* make fftw default package for fftw-api virtual package
* virtual package test assertion now provides location of default virtual packages.
* Change name of virtual package to fftw-api and used versioned interface.
- all commands (except `spack find`, through `ConstraintAction`) now go
through get_env() to get the active environment
- ev.active was hard to read -- and the name wasn't descriptive.
- rename it to _active_environment to be more descriptive and to strongly
indicate that spack.environment manages it
- to aovid changing spec hashes drastically, only add this attribute to
differentiated abstract specs.
- othherwise assume that read-in specs are concrete
- spack.yaml files in the current directory were picked up inconsistently
-- make this a sure thing by moving that logic into find_environment()
and moving find_environment() to main()
- simplify arguments to Spack command:
- remove short args for infrequently used commands (--pdb/-D, -P, -s)
- `spack -D` now forces an env with a directory
- The `Spec` class maintains a special `_patches_in_order_of_appearance`
attribute on patch variants, but it is was preserved when specs are
copied.
- This caused issues for some builds
- Add special logic to `Spec` to preserve this variant on copy
- TODO: in the long term we should get rid of the special variant and
make it the responsibility of one of the variant classes.
- split 'environment' section into 'environments' and 'modules'
- move location to 'query packages' section
- move cd to developer section
- --env-dir no longer has a short optino (was -E)
- -E now means "run without an environment" (no longer same as --env-dir)
- -D now means "run with this directory environment"
- remove short options for may infrequently used top-level commands
- `spack env status` used to show install status; consolidate that into
`spack find`.
- `spack env status` will still print out whether there is an active
environment
- uninstall now:
- restricts its spec search to the current environment
- removes uninstalled specs from the current environment
- reports envs that still need specs you're trying to uninstall
- removed spack env uninstall command
- updated tests
- moved get_env from cmd/env.py to environment.py
- spack install will now install into the active environment when no
arguments are provided. It looks:
1. at the command line
2. for a local spack.yaml file
3. for any currently activated environment
- `spack env create <name>` works as before
- `spack env create <path>` now works as well -- environments can be
created in their own directories outside of Spack.
- `spack install` will look for a `spack.yaml` file in the current
directory, and will install the entire project from the environment
- The Environment class has been refactored so that it does not depend on
the internal Spack environment root; it just takes a path and operates
on an environment in that path (so internal and external envs are
handled the same)
- The named environment interface has been hoisted to the
spack.environment module level.
- env.yaml is now spack.yaml in all places. It was easier to go with one
name for these files than to try to handle logic for both env.yaml and
spack.yaml.
- `spack env activate foo`: sets SPACK_ENV to the current active env name
- `spack env deactivate`: unsets SPACK_ENV, deactivates the environment
- added support to setup_env.sh and setup_env.csh
- other env commands work properly with SPACK_ENV, as with an environment
arguments.
- command-line --env arguments take precedence over the active
environment, if given.
- env.yaml is now meaningful; it contains authoritative user specs
- concretize diffs user specs in env.yaml and env.json to allow user to
add/remove by simply updating env.yaml
- comments are preserved when env.yaml is updated by add/unadd
- env.yaml can contain configuration and include external configuration
either from merged files or from config scopes
- there is only one file format to remember (env.yaml, no separate init
format)
- env.json is now env.lock, and it stores the *last* user specs to be
concretized, along with full provenance.
- internal structure was modified slightly for readability
- env.lock contains a _meta section with metadata, in case needed
- added more tests for environments
- env commands follow Spack conventions; no more `spack env foo install`
- add `SingleFileScope` to configuration, which allows us to pull config
sections from a single file.
- update `env.yaml` and tests to ensure that the env.yaml schema works
when pulling configurtion from the env file.
- Each schema now has a top-level `properties` and `schema` attribute.
- The `properties` is a fragment that can be included in other
jsonschemas, via Python, not via '$ref'
- Th `schema` is a complete `jsonschema` with `title` and `$schema`
properties.
- add a common argument for `-e/--env`
- modify the database to support queries on subsets of hashes
- allow `spack find` to be filtered by hashes in an environment
- logic used in `spack find` was hiding duplicate installations if their
hashes were different
- short hash doesn't work in this scenario, since specs are structurally
identical
- ConstraintAction always works on a DB query, so use the DAG hash to
ensure uniqueness
- `spack.environment` is now the home for most of the infrastructure
around Spack environments
- refactor `cmd/env.py` to use everything from spack.environment
- refactor the cmd/env test to use pytest and fixtures
- `spack.util.environment` is the new home for routines that modify
environment variables.
- This is to make room for `spack.environment` to contain new routines
for dealing with spack environments
- Instead of one method with all parsers, each subcommand gets two
functions: `setup_<cmd>_parser()` and `environment_<cmd>()`
- the `setup_parser()` and `env()` functions now generate the parser
based on these and a list of subcommands.
- it is now easier to associate the arguments with the subcommand.
* modified tutorial packages
* update hint in hdf5 tutorial file (typo for suggested argument)
* add repo.yaml to tutorial repository
* update tutorial docs to refer user to tutorial package repository
* flake edits
* recommend site scope vs. defaults
* you don't specify the repo's name when adding a repo, just the path
* omit symlinks and create file copies when making a binary cache of a package
* unrelated flake edits involving regexes that recent flake is now angry about
* Record stdout for packages without errors
Previously our reporter only stored stdout if something went wrong
while installing a package. This prevented us from properly reporting
on steps where everything went as expected.
* More robustly report all phases to CDash
Previously if a phase generated no output it would not be reported to CDash.
For example, consider the following output:
==> Executing phase: 'configure'
==> Executing phase: 'build'
This would not generate a report for the configure phase. Now it does.
* Add test case for CDash reporting clean builds
* Fix default directory for CDash reports
The default 'cdash_report' directory name was getting overwritten
by 'junit-report'.
* Upload the build phase first to CDash
Older versions of CDash expect Build.xml to be the first file uploaded
for any given build.
* Define cdash_phase before referring to it
fixes#9739
The non-daemonic pool relies heavily on implementation details of the
multiprocessing package. In this commit we provide an implementation
that fits recent python versions.
This allows installing software on a namespace basis by including ${NAMESPACE} in `install_path_scheme`. e.g.,
```
cat ~/.spack/config.yaml
config:
install_path_scheme:
"${ARCHITECTURE}/${NAMESPACE}/${COMPILERNAME}-${COMPILERVER}/${PACKAGE}-${VERSION}-${HASH}"
```
The 'static_to_shared_library' function takes a compiler Executable,
which is intended to be invoked with a list of arguments; the
arguments must be separated from their values in the list, given
the way that 'Executable.__call__' invokes the underlying executable.
'static_to_shared_library' was not doing this, which this commit fixes.
Clang has support for using different fortran compilers with the Clang executable.
Spack includes logic to select a compiler wrapper symlink which refers to the fortran executable (since some build systems depend on the name of the compiler, e.g. 'gfortran' or 'flang').
This selection was previously based on the architecture, and chose incorrectly in some situations (e.g. for clang/gfortran on Linux). This replaces architecture-based wrapper selection with a selection that is based on the name of the Fortran compiler executable.
* Unite Dockerfiles - add build/run/push scripts
* update docker documentation
* update .travis.yml
* switch to using a preprocessor on Dockerfiles
* skip building docker images on pull requests
* update files with copyright info
* tweak when travis builds for docker files are done
fixes#9624
merge_config_rules was using `strict=False` to check if a spec
satisfies a constraint, which loosely translates to "this spec has
no conflict with the constraint, so I can potentially add it to the
spec". We want instead `strict=True` which means "the spec satisfies
the constraint right now".