Removed the code that was converting the old index.yaml format into
index.json. Since the change happened in #2189 it should be
considered safe to drop this (untested) code.
* only override spec prefix for non-external packages
* add test that environment shell modifications respect explicitly-specified prefixes for external packages
* add clarifying comment
spack.util.environment_after_sourcing_files compares the local
environment against a shell environment after having sourced a
file; but this ends up including the default shell profile and
rc, which might differ from the local environment.
To change this, compare against the default shell environment,
expressed here as 'source /dev/null'.
Spack currently cannot run as a background process uninterrupted because some of the logging functions used in the install method (especially to create the dynamic verbosity toggle with the v key) cause the OS to issue a SIGTTOU to Spack when it's backgrounded.
This PR puts the necessary gatekeeping in place so that Spack doesn't do anything that will cause a signal to stop the process when operating as a background process.
Bug: Spack hangs on some Cray machines
Reason: The TERM environment variable is necessary to run bash -lc "echo $CRAY_CPU_TARGET", but we run that command within env -i, which wipes the environment.
Fix: Manually forward the TERM environment variable to env -i /bin/bash -lc "echo $CRAY_CPU_TARGET"
When trying to use an upstream Spack repository, as of f2aca86 Spack
was attempting to write to the upstream DB based on a new metadata
directory added in that commit. Upstream DBs are read-only, so this
should not occur.
This adds a check to prevent Spack from writing to the upstream DB
fixes#15449
Before this PR a call to pkg.url_for_version was modifying
class attributes determining different results for subsequents
calls and an error when the urls was empty.
This recovers the old behavior of replace_prefix_bin that was
modified to work with elf binaries by prefixing os.sep to new prefix
until length is the same as old prefix.
Testing the install StopIteration exception resulted in an attribute error:
AttributeError: 'StopIteration' object has no attribute 'message'
This PR adds a unit test and resolves that error.
The new build process, introduced in #13100 , relies on a spec's dependents in addition to their dependencies. Loading a spec from a yaml file was not initializing the dependents.
- [x] populate dependents when loading from yaml
The distributed build PR (#13100) -- did not check the install status of dependencies when using the `--only package` option so would refuse to install a package with the claim that it had uninstalled dependencies whether that was the case or not.
- [x] add install status checks for the `--only package` case.
- [x] add initial set of tests
This change stores packages' configure arguments during build and makes
use of them while refreshing module files. This fixes problems such as in
#10716.
* Emit a sensible error message if compiler's target is overly specific
fixes#14798fixes#13733
Compiler specifications require a generic architecture family as
their target. This commit improves the error message that is
displayed to users if they edit compilers.yaml and use an overly
specific name.
The hashing logic looks for function calls that are Spack directives.
It expects that when a Spack directive is used that it is referenced
directly by name, and that the directive function is not itself
retrieved by calling another function. When the hashing logic
encountered a function call where the function was determined
dynamically, it would fail (attempting to access a name attribute
that does not happen to exist in this case).
This updates the hashing logic to filter out function calls where the
function is determined dynamically when looking for uses of Spack
directives.
Spack now requires an exact match of the compiler version
requested by the user. A loose constraint can be given to
Spack by using a version range instead of a concrete version
(e.g. 4.5: instead of 4.5).
Sometimes one needs to preserve the (relative order) of
mtimes on installed files. So it's better to just copy
over all the metadata from the source tree to the install
tree. If permissions need fixing, that will be done anyway
afterwards.
One major use case are resource()s:
They're unpacked in one place and then copied to their
final place using install_tree(). If the resource is a
source tree using autoconf/automake, resetting mtimes
uncorrectly might force unwanted autoconf/etc calls.
If the mimetype returned from `file -h -b --mime-type` contains slashes
in its subtype, the tuple returned from `spack.relocate.mime_type` will
have a size larger than two, which leads to errors.
Change-Id: I31de477e69f114ffdc9ae122d00c573f5f749dbb
Fixes#9394Closes#13217.
## Background
Spack provides the ability to enable/disable parallel builds through two options: package `parallel` and configuration `build_jobs`. This PR changes the algorithm to allow multiple, simultaneous processes to coordinate the installation of the same spec (and specs with overlapping dependencies.).
The `parallel` (boolean) property sets the default for its package though the value can be overridden in the `install` method.
Spack's current parallel builds are limited to build tools supporting `jobs` arguments (e.g., `Makefiles`). The number of jobs actually used is calculated as`min(config:build_jobs, # cores, 16)`, which can be overridden in the package or on the command line (i.e., `spack install -j <# jobs>`).
This PR adds support for distributed (single- and multi-node) parallel builds. The goals of this work include improving the efficiency of installing packages with many dependencies and reducing the repetition associated with concurrent installations of (dependency) packages.
## Approach
### File System Locks
Coordination between concurrent installs of overlapping packages to a Spack instance is accomplished through bottom-up dependency DAG processing and file system locks. The runs can be a combination of interactive and batch processes affecting the same file system. Exclusive prefix locks are required to install a package while shared prefix locks are required to check if the package is installed.
Failures are communicated through a separate exclusive prefix failure lock, for concurrent processes, combined with a persistent store, for separate, related build processes. The resulting file contains the failing spec to facilitate manual debugging.
### Priority Queue
Management of dependency builds changed from reliance on recursion to use of a priority queue where the priority of a spec is based on the number of its remaining uninstalled dependencies.
Using a queue required a change to dependency build exception handling with the most visible issue being that the `install` method *must* install something in the prefix. Consequently, packages can no longer get away with an install method consisting of `pass`, for example.
## Caveats
- This still only parallelizes a single-rooted build. Multi-rooted installs (e.g., for environments) are TBD in a future PR.
Tasks:
- [x] Adjust package lock timeout to correspond to value used in the demo
- [x] Adjust database lock timeout to reduce contention on startup of concurrent
`spack install <spec>` calls
- [x] Replace (test) package's `install: pass` methods with file creation since post-install
`sanity_check_prefix` will otherwise error out with `Install failed .. Nothing was installed!`
- [x] Resolve remaining existing test failures
- [x] Respond to alalazo's initial feedback
- [x] Remove `bin/demo-locks.py`
- [x] Add new tests to address new coverage issues
- [x] Replace built-in package's `def install(..): pass` to "install" something
(i.e., only `apple-libunwind`)
- [x] Increase code coverage
* Buildcache creation change the way prefix is copied to workdir.
* install_tree copies hardlinked files
* tarfile creates hardlinked files on extraction.
* create a temporary tarfile from prefix and extract it to workdir
* Use temp tarfile to move workdir to prefix to preserve hardlinks instead of copying
It's often useful to run a module with `python -m`, e.g.:
python -m pyinstrument script.py
Running a python script this way was hard, though, as `spack python` did
not have a similar `-m` option. This PR adds a `-m` option to `spack
python` so that we can do things like this:
spack python -m pyinstrument ./test.py
This makes it easy to write a script that uses a small part of Spack and
then profile it. Previously thee easiest way to do this was to write a
custom Spack command, which is often overkill.
Fixes#10019
If multiple instances of a package were installed in a single
instance of Spack, and they differed in terms of dependencies, then
"spack find" would not distinguish specs based on their dependencies.
For example if two instances of X were installed, one with Y and one
with Z, then "spack find X ^Y" would display both instances of X.
Using `sys.executable` to run Python in a sub-shell doesn't always work in a virtual environment as the `sys.executable` Python is not necessarily compatible with any loaded spack/other virtual environment.
- revert use of sys.executable to print out subshell environment (#14496)
- try instead to use an available python, then if there *is not* one, use `sys.executable`
- this addresses RHEL8 (where there is no `python` and `PYTHONHOME` issue in a simpler way