When we first merged the ASP-based solver, unit-tests
were run in a Docker container with root permissions
and that was preventing a few tests to succeed.
Since some time though, clingo is tested as a regular
user within Github Actions VMs, so we should start to
run checks again.
In an active concretize environment, support installing one or more
cli specs only if they are already present in the environment. The
`--no-add` option is the default for root specs, but optional for
dependency specs. I.e. if you `spack install <depspec>` in an
environment, the dependency-only spec `depspec` will be added as a
root of the environment before being installed. In addition,
`spack install --no-add <spec>` fails if it does not find an
unambiguous match for `spec`.
Like compilers targets now try to minimize
mismatches, instead of maximizing matches.
Deduction of mismatches is reworked to be
the opposite of a match, since computing
that is faster.
The ASP-based solver can natively manage cases where more than one root spec is given, and is able to concretize all the roots together (ensuring one spec per package at most).
Modifications:
- [x] When concretising together an environment the ASP-based solver calls directly its `solve` method rather than constructing a temporary fake root package.
The loading protocol mandates that the the module we are going
to import needs to be already in sys.modules before its code is
executed, so to prevent unbounded recursions and multiple loading.
Loading a module from file exits early if the module is already
in sys.modules
When installing OneAPI packages as root (e.g. in a container), the
installer places cache files in /var/intel/installercache that
interfere with future Spack installs. This ensures that when
running an installation as a root user that this is removed.
The function we coded in Spack to load Python modules with arbitrary
names from a file seem to have issues with local imports. For
loading hooks though it is unnecessary to use such functions, since
we don't care to bind a custom name to a module nor we have to load
it from an unknown location.
This PR thus modifies spack.hook in the following ways:
- Use __import__ instead of spack.util.imp.load_source (this
addresses #20005)
- Sync module docstring with all the hooks we have
- Avoid using memoization in a module function
- Marked with a leading underscore all the names that are supposed
to stay local
This is as much a question as it is a minor fine-tuning of the docs. I've been known to add things to an environment by editing the `spack.yaml` file directly. When I read the previous version of this sentence, I was afraid that `spack add` was actually doing *two* things, modifying the `spack.yaml` and updating something else that defined the roots of the Environment. A bit of experimentation suggests that editing the `spack.yaml` file is sufficient to change the roots.
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
fixes#22786
Trying to get optimization flags for a specific target from
a compiler may trigger warnings. In the context of constructing
facts for the ASP-based solver we don't want to show these
warnings to the user, so here we simply ignore them.
This isn't a significant issue, but I noticed that the docstring incorrectly references "tty.fail" and I wanted to quickly fix it to reflect the correct command, tty.die. I also wanted to fix the docstrings to not be large clumps, to what @tgamblin suggested after I wrote this - having one line at the top that is a quick summary, and more verbose after that.
This provides initial support for [spack monitor](https://github.com/spack/spack-monitor), a web application that stores information and analysis about Spack installations. Spack can now contact a monitor server and upload analysis -- even after a build is already done.
Specifically, this adds:
- [x] monitor options for `spack install`
- [x] `spack analyze` command
- [x] hook architecture for analyzers
- [x] separate build logs (in addition to the existing combined log)
- [x] docs for spack analyze
- [x] reworked developer docs, with hook docs
- [x] analyzers for:
- [x] config args
- [x] environment variables
- [x] installed files
- [x] libabigail
There is a lot more information in the docs contained in this PR, so consult those for full details on this feature.
Additional tests will be added in a future PR.
In debug mode, processes taking an exclusive lock write out their node name to
the lock file. We were using `getfqdn()` for this, but it seems to produce
inconsistent results when used from within some github actions containers.
We get this error because getfqdn() seems to return a short name in one place
and a fully qualified name in another:
```
File "/home/runner/work/spack/spack/lib/spack/spack/test/llnl/util/lock.py", line 1211, in p1
assert lock.host == self.host
AssertionError: assert 'fv-az290-764....cloudapp.net' == 'fv-az290-764'
- fv-az290-764.internal.cloudapp.net
+ fv-az290-764
!!!!!!!!!!!!!!!!!!!! Interrupted: stopping after 1 failures !!!!!!!!!!!!!!!!!!!!
== 1 failed, 2547 passed, 7 skipped, 22 xfailed, 2 xpassed in 1238.67 seconds ==
```
This seems to stem from https://bugs.python.org/issue5004.
We don't really need to get a fully qualified hostname for debugging, so use
`gethostname()` because its results are more consistent. This seems to fix the
issue.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
* Clarify stub compiler definition in compilers.yaml
* Update explanation of why stub compiler definition is needed
* Add note about required module definition when using Spack-installed
intel-parallel-studio as intel-compiler
* Add suggestion about updating package config preferences based on
choice of variants when installing intel-parallel-studio to avoid
reinstallation
We remove system paths from search variables like PATH and
from -L options because they may contain many packages and
could interfere with Spack-built packages. External packages
may be installed to prefixes that are not actually system paths
but are still "merged" in the sense that many other packages are
installed there. To avoid conflicts, this PR places all external
packages at the end of search paths.
We set LC_ALL=C to encourage a build process to generate ASCII
output (so our logger daemon can decode it). Most packages
respect this but it appears that intel-oneapi-compilers does
not in some cases (see #22813). This reads the output of the build
process as UTF-8, which still works if the build process respects
LC_ALL=C but also works if the process generates UTF-8 output.
For Python >= 3.7 all files are opened with UTF-8 encoding by
default. Python 2 does not support the encoding argument on
'open', so to support Python 2 the files would have to be
opened in byte mode and explicitly decoded (as a side note,
this would be the only way to handle other encodings without
being informed of them in advance).
* bugfix: fix representation of null in spack_yaml output
Nulls were previously printed differently by `spack config blame config`
and `spack config get config`. Fix this in the `spack_yaml` dumpers.
* bugfix: `spack config blame` should print all lines of config
`spack config blame` was not printing all lines of configuration because
there were no annotations for empty lines in the YAML dump output. Fix
this by removing empty lines.
- Use debugoptimized as default build type, just like RelWithDebInfo for cmake
- Do not strip by default, and add a default_library variant which conveniently support both shared and static
By default, clingo doesn't show any optimization criteria (maximized or
minimized sums) if the set they aggregate is empty. Per the clingo
mailing list, we can get around that by adding, e.g.:
```
#minimize{ 0@2 : #true }.
```
for the 2nd criterion. This forces clingo to print out the criterion but
does not affect the optimization.
This PR adds directives as above for all of our optimization criteria, as
well as facts with descriptions of each criterion,like this:
```
opt_criterion(2, "number of non-default variants")
```
We use facts in `concretize.lp` rather than hard-coding these in `asp.py`
so that the names can be maintained in the same place as the other
optimization criteria.
The now-displayed weights and the names are used to display optimization
output like this:
```console
(spackle):solver> spack solve --show opt zlib
==> Best of 0 answers.
==> Optimization Criteria:
Priority Criterion Value
1 version weight 0
2 number of non-default variants (roots) 0
3 multi-valued variants + preferred providers for roots 0
4 number of non-default variants (non-roots) 0
5 number of non-default providers (non-roots) 0
6 count of non-root multi-valued variants 0
7 compiler matches + number of nodes 1
8 version badness 0
9 non-preferred compilers 0
10 target matches 0
11 non-preferred targets 0
zlib@1.2.11%apple-clang@12.0.0+optimize+pic+shared arch=darwin-catalina-skylake
```
Note that this is all hidden behind a `--show opt` option to `spack
solve`. Optimization weights are no longer shown by default, but you can
at least inspect them and more easily understand what is going on.
- [x] always show optimization criteria in `clingo` output
- [x] add `opt_criterion()` facts for all optimizationc criteria
- [x] make display of opt criteria optional in `spack solve`
- [x] rework how optimization criteria are displayed, and add a `--show opt`
optiong to `spack solve`
CachedCMakePackage is a CMakePackage subclass for using CMake initial
cache. This feature of CMake allows packages to increase reproducibility,
especially between spack builds and manual builds. It also allows
packages to sidestep certain parsing bugs in extremely long cmake
commands, and to avoid system limits on the length of the command line.
Co-authored by: Chris White <white238@llnl.gov>