This PR improves the validation of `modules.yaml` by introducing a custom validator that checks if an attribute listed in `properties` or `patternProperties` is a valid spec. This new check applied to the test case in #9857 gives:
```console
$ spack install szip
==> Error: /home/mculpo/.spack/linux/modules.yaml:5: "^python@2.7@" is an invalid spec [Invalid version specifier]
```
Details:
* Moved the set-up of a custom validator class to spack.schema
* In Spack we use `jsonschema` to validate configuration files
against a schema. We also need custom validators to enforce
writing default values within "properties" or "patternProperties"
attributes.
* Currently, validators were customized at the place of use and with the
recent introduction of environments that meant we were setting-up and
using 2 different validator classes in two different modules.
* This commit moves the set-up of a custom validator class in the
`spack.schema` module and refactors the code in `spack.config` and
`spack.environments` to use it.
* Added a custom validator to check if an attribute is a valid spec
* Added a custom validator that can be used on objects, which yields an
error if the attribute is not a valid spec.
* Updated the schema for modules.yaml
* Updated modules.yaml to fix a few inconsistencies:
- a few attributes were not tested properly using 'anyOf'
- suffixes has been updated to also check that the attribute is a spec
- hierarchical_scheme has been updated to hierarchy
* Removed $ref from every schema
* $ref is not composable or particularly legible
* Use python dicts and regular old variables instead.
- The nested directive implementation was broken for python 3
- directive results were not properly removed from the directive list
when it was processed in the DirectiveMeta metaclass.
- the issue was that remove_directives only descended into a list or
tuple, but in Python3, the initial value passed to the function is a
view of dictionary values.
- make it a list to fix things, and add a regression test.
- currently just looks at patches
- allows you to find out which package applied a patch to a spec
- intended to work with tarballs and resources in the future.
- add tab completion for `spack resource` and subcommands
- previously, if a concrete sub-DAG with patched specs was written out
and read back in, its patches would not be found because the dependent
that patched it was no longer in the DAG.
- Add a test to ensure that the PatchCache handles this case.
- Also add tests to ensure that patch objects are properly created from
Specs -- previously we only checked that the patches were on the Spec.
- this fixes a bug where if we save a concretized sug-DAG where a package
had been patched by a dependent, and the dependent was not in the DAG,
we would not read in all patches correctly.
- Rather than looking up patches in the DAG, we look them up globally
from an index created from the entire repository.
- The patch cache is a bit tricky for several reasons:
- we have to cache information from packages, specifically, the patch
level and working directory.
- FilePatches need to know which package owns them, so that they can
figure out where the patch lives. The repo can change locations from
run to run, so we have to store relative paths and restore them when
the cache is reloaded.
- Patch files can change underneath the cache, because repo indexes
only update on package changes. We currently punt on this -- there
are stub methods for needs_update() that will need to check patch
files when packages are loaded. There isn't an easy way to do this
at global indexing time without making the FastPackageChecker a lot
slower. This is TBD for a future commit.
- Currently, the same patch can only be used one way in a package. That
is, if it appears twice with different level/working_dir settings,
bad things will happen. There's no package that current uses the
same patch two different ways, so we've punted on this as well, but
we may need to fix this in the future by moving a lot of the metdata
(level, working dir) to the spec, and *only* caching sha256sums in
the PatchCache. That would require some much more complicated tweaks
to the Spec, so we're holding off on that til later.
- This required patches to be refactored somewhat -- the difference
between a UrlPatch and a FilePatch is still not particularly clean.
- indexes should use json, not YAML, to optimize for speed
- only use YAML in human-editable files
- this makes ProviderIndex consistent with other indexes
- virtual provider cache and tags were previously generated by nearly
identical but separate methods.
- factor out an Indexer interface for updating repository caches, and
provide implementations for each type of index (TagIndex,
ProviderIndex) so that more can be added if needed.
- Among other things, this allows all indexes to be updated at once.
This is an advantage because loading package files is the real
overhead, and building the indexes once the packages are loaded is
trivial. We avoid extra bulk read-ins by generating all package indexes
at once.
- This can be extended for dependents (reverse dependencies) and patches
later.
- cleanup patch.py:
- make patch.py constructors more understandable
- loosen coupling of patch.py with package
- in Package: make package_dir, module, and namespace class properties
- These were previously instance properties and couldn't be called from
directives, e.g. in patch.create()
- make them class properties so that they can be used in class definition
- also add some instance properties to delegate to class properties so
that prior usage on Package objects still works
- When returning string output, use text_type and decode utf-8 in Python
2 instead of using `str`
- This properly handles unicode, whereas before we would pass bad strings
to colify in `spack blame` when reading git output
- add a test that round-trips some unicode through an Executable object
* Remove /nfs/tmp2 from default configuration
* /nfs/tmp2 is going away from LC... and doesn’t exist for the rest of the world.
* update documentation to remove /nfs/tmp2 as well
* Record build output as an array of lines rather than concatenating to a
single large string.
* Use string.find to avoid running re.search on every line of output.
- some commands were missed in the rollout of spack environments
- this makes all commands that need to disambiguate specs restrict the
disambiguation to installed packages in the active environment, as
users would expect
* This fixes a number of bugs:
* Patches were not properly downloaded and added to mirrors.
* Mirror create didn't respect `list_url` in packages
* Update the `spack mirror` command to add all packages in the
concretized DAG (where originally it only added the package specified
by the user). This is required in order to collect patches that are specified
by dependents. Example:
* if X->Y and X requires a patch on Y called Pxy, then Pxy will only
be discovered if you create a mirror with X.
* replace confusing --one-version-per-spec option for `spack mirror create`
with --versions-per-spec; support retrieving multiple versions for
concrete specs
* Implementation details:
* `spack mirror create` now uses regular staging logic to download files
into a mirror, instead of reimplementing it in `add_single_spec`.
* use a separate resource caching object to keep track of new
resources and already-existing resources; also accepts storing
resources retrieved from a cache (unlike the local cache)
* mirror cache object now stores resources that are considered
non-cachable, like (e.g. the tip of a branch);
* the 'create' function of the mirror module no longer traverses
dependencies since this was already handled by the 'mirror' command;
* Change handling of `--no-checksum`:
* now that 'mirror create' uses stages, the mirror tests disable
checksums when creating the mirror
* remove `no_checksum` argument from library functions - this is now
handled at the Spack-command-level (like for 'spack install')
- all multimethod tests are now run for both `multimethod` and
`multimethod-inheritor`
- do this with a parameterized fixture (pkg_name) that runs the same
tests on both
- Since early Spack versions, the SpecParser has (weirdly) been
responsible for initializing Spec fields.
- This refactors initialization to take place in Spec.__init__, as it
probably should have originally.
- This makes the code easier to read, the parser easier to understand,
and removes the use of __new__ in the parser to initialize the Spec.
- This also makes it possible to make a completely empty Spec with
`Spec()` -- this is an abstract Spec that will match anything.
* "spack install" now uses cache by default, update examples accordingly
* Replace some example packages with others
* Packing tutorial reference to "spack env" replaced with "spack build-env"
* Command line prompts in examples are shortened
* Example output (including paths) are updated to be more relevant to training environment
Update all examples that need an MPI provider to build with MPICH; reorganize so that fixing MPICH (as part of environment section) comes first in the tutorial (most examples in the tutorial use an MPI provider).
- previously, uninstall would complain if a spec was needed by an
environment.
- Now, we analyze dependents and dependent environments and simply remove
(not uninstall) specs that are needed by environments