The signature for configure_args in the template for new
RPackage packages was incorrect (different than what is
defined and used in lib/spack/spack/build_systems/r.py)
See issue #21774
Keep spack.store.store and spack.store.db consistent in unit tests
* Remove calls to monkeypatch for spack.store.store and spack.store.db:
tests that used these called one or the other, which lead to
inconsistencies (the tests passed regardless but were fragile as a
result)
* Fixtures making use of monkeypatch with mock_store now use the
updated use_store function, which sets store.store and store.db
consistently
* subprocess_context.TestState now transfers the serializes and
restores spack.store.store (without the monkeypatch changes this
would have created inconsistencies)
Since signals are fundamentally racy, We can't bound the amount of time
that the `test_foreground_background_output` test will take to get to
'on', we can only observe that it transitions to 'on'. So instead of
using an arbitrary limit, just adjust the test to allow either 'on' or
'off' followed by 'on'.
This should eliminate the spurious errors we see in CI.
Follow-up to #17110
### Before
```bash
CC=/Users/Adam/spack/lib/spack/env/clang/clang; export CC
SPACK_CC=/usr/bin/clang; export SPACK_CC
PATH=...:/Users/Adam/spack/lib/spack/env/apple-clang:/Users/Adam/spack/lib/spack/env/case-insensitive:/Users/Adam/spack/lib/spack/env:...; export PATH
```
### After
```bash
CC=/Users/Adam/spack/lib/spack/env/clang/clang; export CC
SPACK_CC=/usr/bin/clang; export SPACK_CC
PATH=...:/Users/Adam/spack/lib/spack/env/clang:/Users/Adam/spack/lib/spack/env/case-insensitive:/Users/Adam/spack/lib/spack/env:...; export PATH
```
`CC` and `SPACK_CC` were being set correctly, but `PATH` was using the name of the compiler `apple-clang` instead of `clang`. For most packages, since `CC` was set correctly, nothing broke. But for packages using `Makefiles` that set `CC` based on `which clang`, it was using the system compilers instead of the compiler wrappers. Discovered when working on `py-xgboost@0.90`.
An alternative fix would be to copy the symlinks in `env/clang` to `env/apple-clang`. Let me know if you think there's a better way to do this, or to test this.
* sbang pushed back to callers;
star moved to util.lang
* updated unit test
* sbang test moved; local tests pass
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
fixes#20736
Before this one line fix we were erroneously deducing
that dependency conditions hold even if a package
was external.
This may result in answer sets that contain imposed
conditions on a node without the node being present
in the DAG, hence #20736.
At some point in the past, the skip_patch argument was removed
from the call to package.do_install() this broke the --skip-patch
flag on the dev-build command.
fixes#20679
In this refactor we have a single cardinality rule on the
provider, which triggers a rule transforming a dependency
on a virtual package into a dependency on the provider of
the virtual.
Every other predicate in the concretizer uses a `_set` suffix to
implement user- or package-supplied settings, but compiler settings use a
`_hard` suffix for this. There's no difference in how they're used, so
make the names the same.
- [x] change `node_compiler_hard` to `node_compiler_set`
- [x] change `node_compiler_version_hard` to `node_compiler_version_set`
Previously, the concretizer handled version constraints by comparing all
pairs of constraints and ensuring they satisfied each other. This led to
INCONSISTENT ressults from clingo, due to ambiguous semantics like:
version_constraint_satisfies("mpi", ":1", ":3")
version_constraint_satisfies("mpi", ":3", ":1")
To get around this, we introduce possible (fake) versions for virtuals,
based on their constraints. Essentially, we add any Versions,
VersionRange endpoints, and all such Versions and endpoints from
VersionLists to the constraint. Virtuals will have one of these synthetic
versions "picked" by the solver. This also allows us to remove a special
case from handling of `version_satisfies/3` -- virtuals now work just
like regular packages.
This converts the virtual handling in the new concretizer from
already-ground rules to facts. This is the last thing that needs to be
refactored, and it converts the entire concretizer to just use facts.
The previous way of handling virtuals hinged on rules involving
`single_provider_for` facts that were tied to the virtual and a version
range. The new method uses the condition pattern we've been using for
dependencies, externals, and conflicts.
To handle virtuals as conditions, we impose constraints on "fake" virtual
specs in the logic program. i.e., `version_satisfies("mpi", "2.0:",
"2.0")` is legal whereas before we wouldn't have seen something like
this. Currently, constriants are only handled on versions -- we don't
handle variants or anything else yet, but they key change here is that we
*could*. For a long time, virtual handling in Spack has only dealt with
versions, and we'd like to be able to handle variants as well. We could
easily add an integrity constraint to handle variants like the one we use
for versions.
One issue with the implementation here is that virtual packages don't
actually declare possible versions like regular packages do. To get
around that, we implement an integrity constraint like this:
:- virtual_node(Virtual),
version_satisfies(Virtual, V1), version_satisfies(Virtual, V2),
not version_constraint_satisfies(Virtual, V1, V2).
This requires us to compare every version constraint to every other, both
in program generation and within the concretizer -- so there's a
potentially quadratic evaluation time on virtual constraints because we
don't have a real version to "anchor" things to. We just say that all the
constraints need to agree for the virtual constraint to hold.
We can investigate adding synthetic versions for virtuals in the future,
to speed this up.
This code in `SpecBuilder.build_specs()` introduced in #20203, can loop
seemingly interminably for very large specs:
```python
set([spec.root for spec in self._specs.values()])
```
It's deceptive, because it seems like there must be an issue with
`spec.root`, but that works fine. It's building the set afterwards that
takes forever, at least on `r-rminer`. Currently if you try running
`spack solve r-rminer`, it loops infinitely and spins up your fan.
The issue (I think) is that the spec is not yet complete when this is
run, and something is going wrong when constructing and comparing so many
values produced by `_cmp_key()`. We can investigate the efficiency of
`_cmp_key()` separately, but for now, the fix is:
```python
roots = [spec.root for spec in self._specs.values()]
roots = dict((id(r), r) for r in roots)
```
We know the specs in `self._specs` are distinct (they just came out of
the solver), so we can just use their `id()` to unique them here. This
gets rid of the infinite loop.
Environment yaml files should not have default values written to them.
To accomplish this, we change the validator to not add the default values to yaml. We rely on the code to set defaults for all values (and use defaulting getters like dict.get(key, default)).
Includes regression test.
This creates a set of packages which all use the same script to install
components of Intel oneAPI. This includes:
* An inheritable IntelOneApiPackage which knows how to invoke the
installation script based on which components are requested
* For components which include headers/libraries, an inheritable
IntelOneApiLibraryPackage is provided to locate them
* Individual packages for DAL, DNN, TBB, etc.
* A package for the Intel oneAPI compilers (icx/ifx). This also includes
icc/ifortran but these are not currently detected in this PR
We have to repeat all the spec attributes in a number of places in
`concretize.lp`, and Spack has a fair number of spec attributes. If we
instead add some rules up front that establish equivalencies like this:
```
node(Package) :- attr("node", Package).
attr("node", Package) :- node(Package).
version(Package, Version) :- attr("version", Package, Version).
attr("version", Package, Version) :- version(Package, Version).
```
We can rewrite most of the repetitive conditions with `attr` and repeat
only for each arity (there are only 3 arities for spec attributes so far)
as opposed to each spec attribute. This makes the logic easier to read
and the rules easier to follow.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Continuing to convert everything in `asp.py` into facts, make the
generation of ground rules for conditional dependencies use facts, and
move the semantics into `concretize.lp`.
This is probably the most complex logic in Spack, as dependencies can be
conditional on anything, and we need conditional ASP rules to accumulate
and map all the dependency conditions to spec attributes.
The logic looks complicated, but essentially it accumulates any
constraints associated with particular conditions into a fact associated
with the condition by id. Then, if *any* condition id's fact is True, we
trigger the dependency.
This simplifies the way `declared_dependency()` works -- the dependency
is now declared regardless of whether it is conditional, and the
conditions are handled by `dependency_condition()` facts.
There are currently no places where we do not want to traverse
dependencies in `spec_clauses()`, so simplify the logic by consolidating
`spec_traverse_clauses()` with `spec_clauses()`.
`version_satisfies/2` and `node_compiler_version_satisfies/3` are
generated but need `#defined` directives to avoid " info: atom does not
occur in any rule head:" warnings.
This PR addresses a number of issues related to compiler bootstrapping.
Specifically:
1. Collect compilers to be bootstrapped while queueing in installer
Compiler tasks currently have an incomplete list in their task.dependents,
making those packages fail to install as they think they have not all their
dependencies installed. This PR collects the dependents and sets them on
compiler tasks.
2. allow boostrapped compilers to back off target
Bootstrapped compilers may be built with a compiler that doesn't support
the target used by the rest of the spec. Allow them to build with less
aggressive target optimization settings.
3. Support for target ranges
Backing off the target necessitates computing target ranges, so make Spack
handle those properly. Notably, this adds an intersection method for target
ranges and fixes the way ranges are satisfied and constrained on Spec objects.
This PR also:
- adds testing
- improves concretizer handling of target ranges
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Currently, version range constraints, compiler version range constraints,
and target range constraints are implemented by generating ground rules
from `asp.py`, via `one_of_iff()`. The rules look like this:
```
version_satisfies("python", "2.6:") :- 1 { version("python", "2.4"); ... } 1.
1 { version("python", "2.4"); ... } 1. :- version_satisfies("python", "2.6:").
```
So, `version_satisfies(Package, Constraint)` is true if and only if the
package is assigned a version that satisfies the constraint. We
precompute the set of known versions that satisfy the constraint, and
generate the rule in `SpackSolverSetup`.
We shouldn't need to generate already-ground rules for this. Rather, we
should leave it to the grounder to do the grounding, and generate facts
so that the constraint semantics can be defined in `concretize.lp`.
We can replace rules like the ones above with facts like this:
```
version_satisfies("python", "2.6:", "2.4")
```
And ground them in `concretize.lp` with rules like this:
```
1 { version(Package, Version) : version_satisfies(Package, Constraint, Version) } 1
:- version_satisfies(Package, Constraint).
version_satisfies(Package, Constraint)
:- version(Package, Version), version_satisfies(Package, Constraint, Version).
```
The top rule is the same as before. It makes conditional dependencies and
other places where version constraints are used work properly. Note that
we do not need the cardinality constraint for the second rule -- we
already have rules saying there can be only one version assigned to a
package, so we can just infer from `version/2` `version_satisfies/3`.
This form is also safe for grounding -- If we used the original form we'd
have unsafe variables like `Constraint` and `Package` -- the original
form only really worked when specified as ground to begin with.
- [x] use facts instead of generating rules for package version constraints
- [x] use facts instead of generating rules for compiler version constraints
- [x] use facts instead of generating rules for target range constraints
- [x] remove `one_of_iff()` and `iff()` as they're no longer needed
I was keeping the old `clingo` driver code around in case we had to run
using the command line tool instad of through the Python interface.
So far, the command line is faster than running through Python, but I'm
working on fixing that. I found that if I do this:
```python
control = clingo.Control()
control.load("concretize.lp")
control.load("hdf5.lp") # code from spack solve --show asp hdf5
control.load("display.lp")
control.ground([("base", [])])
control.solve(...)
```
It's just as fast as the command line tool. So we can always generate the
code and load it manually if we need to -- we don't need two drivers for
clingo. Given that the python interface is also the only way to get unsat
cores, I think we pretty much have to use it.
So, I'm removing the old command line driver and other unused code. We
can dig it up again from the history if it is needed.
Track all the variant values mentioned when emitting constraints, validate them
and emit a fact that allows them as possible values.
This modification ensures that open-ended variants (variants accepting any string
or any integer) are projected to the finite set of values that are relevant for this
concretization.
Other parts of the concretizer code build up lists of things we can't
know without traversing all specs and packages, and they output these
list at the very end.
The code for this for variant values from spec literals was intertwined
with the code for traversing the input specs. This only covers the input
specs and misses variant values that might come from directives in
packages.
- [x] move ad-hoc value handling code into spec_clauses so we do it in
one place for CLI and packages
- [x] move handling of `variant_possible_value`, etc. into
`concretize.lp`, where we can automatically infer variant existence
more concisely.
- [x] simplify/clarify some of the code for variants in `spec_clauses()`
fixes#20055
Compiler with custom versions like gcc@foo are not currently
matched to the appropriate targets. This is because the
version of spec doesn't match the "real" version of the
compiler.
This PR replicates the strategy used in the original
concretizer to deal with that and tries to detect the real
version of compilers if the version in the spec returns no
results.
fixes#20040
Matching compilers among nodes has been prioritized
in #20020. Selection of default variants has been
tuned in #20182. With this setup there is no need
to have an ad-hoc rule for external packages. On
the contrary it should be removed to prefer having
default variant values over more external nodes in
the DAG.
refers #20040
Before this PR optimization rules would have selected default
providers at a higher priority than default variants. Here we
swap this priority and we consider variants that are forced by
any means (root spec or spec in depends_on clause) the same as
if they were with a default value.
This prevents the solver from avoiding expected configurations
just because they contain directives like:
depends_on('pkg+foo')
and `+foo` is not the default variant value for pkg.
fixes#19981
This commit adds support for target ranges in directives,
for instance:
conflicts('+foo', when='target=x86_64:,aarch64:')
If any target in a spec body is not a known target the
following clause will be emitted:
node_target_satisfies(Package, TargetConstraint)
when traversing the spec and a definition of
the clause will then be printed at the end similarly
to what is done for package and compiler versions.
fixes#20019
Before this modification having a newer version of a node came
at higher priority in the optimization than having matching
compilers. This could result in unexpected configurations for
packages with conflict directives on compilers of the type:
conflicts('%gcc@X.Y:', when='@:A.B')
where changing the compiler for just that node is preferred to
lower the node version to less than 'A.B'. Now the priority has
been switched so the solver will try to lower the version of the
nodes in question before changing their compiler.
refers #20079
Added docstrings to 'concretize' and 'concretized' to
document the format for tests.
Added tests for the activation of test dependencies.
refers #20040
This modification emits rules like:
provides_virtual("netlib-lapack","blas") :- variant_value("netlib-lapack","external-blas","False").
for packages that provide virtual dependencies conditionally instead
of a fact that doesn't account for the condition.
Follow-up to #17110
### Before
```bash
CC=/Users/Adam/spack/lib/spack/env/clang/clang; export CC
SPACK_CC=/usr/bin/clang; export SPACK_CC
PATH=...:/Users/Adam/spack/lib/spack/env/apple-clang:/Users/Adam/spack/lib/spack/env/case-insensitive:/Users/Adam/spack/lib/spack/env:...; export PATH
```
### After
```bash
CC=/Users/Adam/spack/lib/spack/env/clang/clang; export CC
SPACK_CC=/usr/bin/clang; export SPACK_CC
PATH=...:/Users/Adam/spack/lib/spack/env/clang:/Users/Adam/spack/lib/spack/env/case-insensitive:/Users/Adam/spack/lib/spack/env:...; export PATH
```
`CC` and `SPACK_CC` were being set correctly, but `PATH` was using the name of the compiler `apple-clang` instead of `clang`. For most packages, since `CC` was set correctly, nothing broke. But for packages using `Makefiles` that set `CC` based on `which clang`, it was using the system compilers instead of the compiler wrappers. Discovered when working on `py-xgboost@0.90`.
An alternative fix would be to copy the symlinks in `env/clang` to `env/apple-clang`. Let me know if you think there's a better way to do this, or to test this.
The fixture was introduced in #19690 maybe accidentally.
It's not used in unit tests, and though it should be
mutable it seems an exact copy of it's immutable version.
Before this change, in pipeline environments where runners do not have access
to persistent shared file-system storage, the only way to pass buildcaches to
dependents in later stages was by using the "enable-artifacts-buildcache" flag
in the gitlab-ci section of the spack.yaml. This change supports a second
mechanism, named "temporary-storage-url-prefix", which can be provided instead
of the "enable-artifacts-buildcache" feature, but the two cannot be used at the
same time. If this prefix is provided (only "file://" and "s3://" urls are
supported), the gitlab "CI_PIPELINE_ID" will be appended to it to create a url
for a mirror where pipeline jobs will write buildcache entries for use by jobs
in subsequent stages. If this prefix is provided, a cleanup job will be
generated to run after all the rebuild jobs have finished that will delete the
contents of the temporary mirror. To support this behavior a new mirror
sub-command has been added: "spack mirror destroy" which can take either a
mirror name or url.
This change also fixes a bug in generation of "needs" list for each job. Each
jobs "needs" list is supposed to only contain direct dependencies for scheduling
purposes, unless "enable-artifacts-buildcache" is specified. Only in that case
are the needs lists supposed to contain all transitive dependencies. This
changes fixes a bug that caused the needs lists to always contain all transitive
dependencies, regardless of whether or not "enable-artifacts-buildcache" was
specified.
Pipelines: DAG pruning
During the pipeline generation staging process we check each spec against all configured mirrors to determine whether it is up to date on any of the mirrors. By default, and with the --prune-dag argument to "spack ci generate", any spec already up to date on at least one remote mirror is omitted from the generated pipeline. To generate jobs for up to date specs instead of omitting them, use the --no-prune-dag argument. To speed up the pipeline generation process, pass the --check-index-only argument. This will cause spack to check only remote buildcache indices and avoid directly fetching any spec.yaml files from mirrors. The drawback is that if the remote buildcache index is out of date, spec rebuild jobs may be scheduled unnecessarily.
This change removes the final-stage-rebuild-index block from gitlab-ci section of spack.yaml. Now rebuilding the buildcache index of the mirror specified in the spack.yaml is the default, unless "rebuild-index: False" is set. Spack assigns the generated rebuild-index job runner attributes from an optional new "service-job-attributes" block, which is also used as the source of runner attributes for another generated non-build job, a no-op job, which spack generates to avoid gitlab errors when DAG pruning results in empty pipelines.
The SPACK_PYTHON environment variable can be set to a python interpreter to be
used by the spack command. This allows the spack command itself to use a
consistent and separate interpreter from whatever python might be used for package
building.
Modifications:
- Make use of SpackCommand objects wherever possible
- Deduplicated code when possible
- Moved cleaning of mirrors to fixtures
- Ensure mock configuration has a clear initialization order
`query()` calls `datetime.datetime.fromtimestamp` regardless of whether a
date query is being done. Guard this with an if statement to avoid the
unnecessary work.
Constructing a spec from a name instead of setting name directly forces
from_node_dict to call Spec.parse(), which is slow. Avoid this by using a
zero-arg constructor and setting name directly.
This solves a few FIXMEs in conftest.py, where
we were manipulating globals and seeing side
effects prior to registering fixtures.
This commit solves the FIXMEs, but introduces
a performance regression on tests that may need
to be investigated
The method is now called "use_repositories" and
makes it clear in the docstring that it accepts
as arguments either Repo objects or paths.
Since there was some duplication between this
contextmanager and "use_repo" in the testing framework,
remove the latter and use spack.repo.use_repositories
across the entire code base.
Make a few adjustment to MockPackageMultiRepo, since it was
stating in the docstring that it was supposed to mock
spack.repo.Repo and was instead mocking spack.repo.RepoPath.
Some compilers, such as the NV compilers, do not recognize -isystem
dir when specified without a space.
Works: -isystem ../include
Does not work: -isystem../include
This PR updates the compiler wrapper to include the space with -isystem.
Environment views fail when the tmpdir used for view generation is
on a separate mount from the install_tree because the files cannot
by symlinked between the two. The fix is to use an alternative
tmpdir located alongside the view.
* Procedure to deprecate old versions of software
* Add documentation
* Fix bug in logic
* Update tab completion
* Deprecate legacy packages
* Deprecate old mxnet as well
* More explicit docs
This commit adds an option to the `external find`
command that allows it to search by tags. In this
way group of executables with common purposes can
be grouped under a single name and a simple command
can be used to detect all of them.
As an example introduce the 'build-tools' tag to
search for common development tools on a system
The "fact" method before was dealing with multiple facts
registered per call, which was used when we were emitting
grounded rules from knowledge of the problem instance.
Now that the encoding is changed we can simplify the method
to deal only with a single fact per call.
Sometimes we need to patch a file that is a dependency for some other
automatically generated file that comes in a release tarball. As a
result, make tries to regenerate the dependent file using additional
tools (e.g. help2man), which would not be needed otherwise.
In some cases, it's preferable to avoid that (e.g. see #21255). A way
to do that is to save the modification timestamps before patching and
restoring them afterwards. This PR introduces a context wrapper that
does that.
The first of my two upstream patches to mypy landed in the 0.800 tag that was released this morning, which lets us use module and package parameters with a .mypy.ini file that has a files key. This uses those parameters to check all of spack in style, but leaves the packages out for now since they are still very, very broken. If no package has been modified, the packages are not checked, but if one has they are. Includes some fixes for the log tests since they were not type checking.
Should also fix all failures related to "duplicate module named package" errors.
Hopefully the next drop of mypy will include my other patch so we can just specify the modules and packages in the config file to begin with, but for now we'll have to live with a bare mypy doing a check of the libs but not the packages.
* use module and package flags to check packages properly
* stop checking package files, use package flag for libs
The packages are not type checkable yet, need to finish out another PR
before they can be. The previous commit also didn't check the libraries
properly, this one does.
* sbang pushed back to callers;
star moved to util.lang
* updated unit test
* sbang test moved; local tests pass
Co-authored-by: Nathan Hanford <hanford1@llnl.gov>
fixes#20736
Before this one line fix we were erroneously deducing
that dependency conditions hold even if a package
was external.
This may result in answer sets that contain imposed
conditions on a node without the node being present
in the DAG, hence #20736.
At some point in the past, the skip_patch argument was removed
from the call to package.do_install() this broke the --skip-patch
flag on the dev-build command.
fixes#20679
In this refactor we have a single cardinality rule on the
provider, which triggers a rule transforming a dependency
on a virtual package into a dependency on the provider of
the virtual.
This adds a -i option to "spack python" which allows use of the
IPython interpreter; it can be used with "spack python -i ipython".
This assumes it is available in the Python instance used to run
Spack (i.e. that you can "import IPython").
Every other predicate in the concretizer uses a `_set` suffix to
implement user- or package-supplied settings, but compiler settings use a
`_hard` suffix for this. There's no difference in how they're used, so
make the names the same.
- [x] change `node_compiler_hard` to `node_compiler_set`
- [x] change `node_compiler_version_hard` to `node_compiler_version_set`
Previously, the concretizer handled version constraints by comparing all
pairs of constraints and ensuring they satisfied each other. This led to
INCONSISTENT ressults from clingo, due to ambiguous semantics like:
version_constraint_satisfies("mpi", ":1", ":3")
version_constraint_satisfies("mpi", ":3", ":1")
To get around this, we introduce possible (fake) versions for virtuals,
based on their constraints. Essentially, we add any Versions,
VersionRange endpoints, and all such Versions and endpoints from
VersionLists to the constraint. Virtuals will have one of these synthetic
versions "picked" by the solver. This also allows us to remove a special
case from handling of `version_satisfies/3` -- virtuals now work just
like regular packages.
This converts the virtual handling in the new concretizer from
already-ground rules to facts. This is the last thing that needs to be
refactored, and it converts the entire concretizer to just use facts.
The previous way of handling virtuals hinged on rules involving
`single_provider_for` facts that were tied to the virtual and a version
range. The new method uses the condition pattern we've been using for
dependencies, externals, and conflicts.
To handle virtuals as conditions, we impose constraints on "fake" virtual
specs in the logic program. i.e., `version_satisfies("mpi", "2.0:",
"2.0")` is legal whereas before we wouldn't have seen something like
this. Currently, constriants are only handled on versions -- we don't
handle variants or anything else yet, but they key change here is that we
*could*. For a long time, virtual handling in Spack has only dealt with
versions, and we'd like to be able to handle variants as well. We could
easily add an integrity constraint to handle variants like the one we use
for versions.
One issue with the implementation here is that virtual packages don't
actually declare possible versions like regular packages do. To get
around that, we implement an integrity constraint like this:
:- virtual_node(Virtual),
version_satisfies(Virtual, V1), version_satisfies(Virtual, V2),
not version_constraint_satisfies(Virtual, V1, V2).
This requires us to compare every version constraint to every other, both
in program generation and within the concretizer -- so there's a
potentially quadratic evaluation time on virtual constraints because we
don't have a real version to "anchor" things to. We just say that all the
constraints need to agree for the virtual constraint to hold.
We can investigate adding synthetic versions for virtuals in the future,
to speed this up.
This code in `SpecBuilder.build_specs()` introduced in #20203, can loop
seemingly interminably for very large specs:
```python
set([spec.root for spec in self._specs.values()])
```
It's deceptive, because it seems like there must be an issue with
`spec.root`, but that works fine. It's building the set afterwards that
takes forever, at least on `r-rminer`. Currently if you try running
`spack solve r-rminer`, it loops infinitely and spins up your fan.
The issue (I think) is that the spec is not yet complete when this is
run, and something is going wrong when constructing and comparing so many
values produced by `_cmp_key()`. We can investigate the efficiency of
`_cmp_key()` separately, but for now, the fix is:
```python
roots = [spec.root for spec in self._specs.values()]
roots = dict((id(r), r) for r in roots)
```
We know the specs in `self._specs` are distinct (they just came out of
the solver), so we can just use their `id()` to unique them here. This
gets rid of the infinite loop.
- [x] add `concretize.lp`, `spack.yaml`, etc. to licensed files
- [x] update all licensed files to say 2013-2021 using
`spack license update-copyright-year`
- [x] appease mypy with some additions to package.py that needed
for oneapi.py
This adds a new subcommand to `spack license` that automatically updates
the copyright year in files that should have a license header.
- [x] add `spack license update-copyright-year` command
- [x] add test
GCC looks for included files based on several env vars.
Remove C_INCLUDE_PATH, CPLUS_INCLUDE_PATH, and OBJC_INCLUDE_PATH
from the build environment to ensure it's clean and prevent
accidental clobbering.
Environment yaml files should not have default values written to them.
To accomplish this, we change the validator to not add the default values to yaml. We rely on the code to set defaults for all values (and use defaulting getters like dict.get(key, default)).
Includes regression test.
This creates a set of packages which all use the same script to install
components of Intel oneAPI. This includes:
* An inheritable IntelOneApiPackage which knows how to invoke the
installation script based on which components are requested
* For components which include headers/libraries, an inheritable
IntelOneApiLibraryPackage is provided to locate them
* Individual packages for DAL, DNN, TBB, etc.
* A package for the Intel oneAPI compilers (icx/ifx). This also includes
icc/ifortran but these are not currently detected in this PR
I lost my mind a bit after getting the completion stuff working and
decided to get Mypy working for spack as well. This adds a
`.mypy.ini` that checks all of the spack and llnl modules, though
not yet packages, and fixes all of the identified missing types and
type issues for the spack library.
In addition to these changes, this includes:
* rename `spack flake8` to `spack style`
Aliases flake8 to style, and just runs flake8 as before, but with
a warning. The style command runs both `flake8` and `mypy`,
in sequence. Added --no-<tool> options to turn off one or the
other, they are on by default. Fixed two issues caught by the tools.
* stub typing module for python2.x
We don't support typing in Spack for python 2.x. To allow 2.x to
support `import typing` and `from typing import ...` without a
try/except dance to support old versions, this adds a stub module
*just* for python 2.x. Doing it this way means we can only reliably
use all type hints in python3.7+, and mypi.ini has been updated to
reflect that.
* add non-default black check to spack style
This is a first step to requiring black. It doesn't enforce it by
default, but it will check it if requested. Currently enforcing the
line length of 79 since that's what flake8 requires, but it's a bit odd
for a black formatted project to be quite that narrow. All settings are
in the style command since spack has no pyproject.toml and I don't
want to add one until more discussion happens. Also re-format
`style.py` since it no longer passed the black style check
with the new length.
* use style check in github action
Update the style and docs action to use `spack style`, adding in mypy
and black to the action even if it isn't running black right now.
We have to repeat all the spec attributes in a number of places in
`concretize.lp`, and Spack has a fair number of spec attributes. If we
instead add some rules up front that establish equivalencies like this:
```
node(Package) :- attr("node", Package).
attr("node", Package) :- node(Package).
version(Package, Version) :- attr("version", Package, Version).
attr("version", Package, Version) :- version(Package, Version).
```
We can rewrite most of the repetitive conditions with `attr` and repeat
only for each arity (there are only 3 arities for spec attributes so far)
as opposed to each spec attribute. This makes the logic easier to read
and the rules easier to follow.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
This PR does three related things to try to improve developer tooling quality of life:
1. Adds new options to `.flake8` so it applies the rules of both `.flake8` and `.flake_package` based on paths in the repository.
2. Adds a re-factoring of the `spack flake8` logic into a flake8 plugin so using flake8 directly, or through editor or language server integration, only reports errors that `spack flake8` would.
3. Allows star import of `spack.pkgkit` in packages, since this is now the thing that needs to be imported for completion to work correctly in package files, it's nice to be able to do that.
I'm sorely tempted to sed over the whole repository and put `from spack.pkgkit import *` in every package, but at least being allowed to do it on a per-package basis helps.
As an example of what the result of this is:
```
~/Workspace/Projects/spack/spack develop* ⇣
❯ flake8 --format=pylint ./var/spack/repos/builtin/packages/kripke/package.py
./var/spack/repos/builtin/packages/kripke/package.py:6: [F403] 'from spack.pkgkit import *' used; unable to detect undefined names
./var/spack/repos/builtin/packages/kripke/package.py:25: [E501] line too long (88 > 79 characters)
~/Workspace/Projects/spack/spack refactor-flake8*
1 ❯ flake8 --format=spack ./var/spack/repos/builtin/packages/kripke/package.py
~/Workspace/Projects/spack/spack refactor-flake8*
❯ flake8 ./var/spack/repos/builtin/packages/kripke/package.py
```
* qa/flake8: update .flake8, spack formatter plugin
Adds:
* Modern flake8 settings for per-path/glob error ignores, allows
packages to use the same `.flake8` as the rest of spack
* A spack formatter plugin to flake8 that implements the behavior of
`spack flake8` for direct invocations. Makes integration with
developer tooling nicer, linting with flake8 reports only errors that
`spack flake8` would report. Using pyls and pyls-flake8, or any other
non-format-dependent flake8 integration, now works with spack's rules.
* qa/flake8: allow star import of spack.pkgkit
To get working completion of directives and spack components it's
necessary to import the contents of spack.pkgkit. At the moment doing
this makes flake8 displeased. For now, allow spack.pkgkit and spack
both, next step is to ban spack * and require spack.pkgkit *.
* first cut at refactoring spack flake8
This version still copies all of the files to be checked as befire, and
some other things that probably aren't necessary, but it relies on the
spack formatter plugin to implement the ignore logic.
* keep flake8 from rejecting itself
* remove separate packages flake8 config
* fix failures from too many files
I ran into this in the PR converting pkgkit to std. The solution in
that branch does not work in all cases as it turns out, and all the
workarounds I tried to use generated configs to get a single invocation
of flake8 with a filename optoion to work failed. It's an astonishingly
frustrating config option.
Regardless, this removes all temporary file creation from the command
and relies on the plugin instead. To work around the huge number of
files in spack and still allow the command to control what gets checked,
it scans files in batches of 100. This is a completely arbitrary number
but was chosen to be safely under common line-length limits. One
side-effect of this is that every 100 files the command will produce
output, rather than only at the end, which doesn't seem like a terrible
thing.