This consolidates code across tools in `spack style` so that each
`run_<tool>` function can be called indirecty through a dictionary
of handlers, and os that checks like finding the executable for the
tool can be shared across commands.
- [x] rework `spack style` to use decorators to register tools
- [x] define tool order in one place in `spack style`
- [x] fix python 2/3 issues to Get `isort` checks working
- [x] make isort error regex more robust across versions
- [x] remove unused output option
- [x] change vestigial `TRAVIS_BRANCH` to `GITHUB_BASE_REF`
- [x] update completion
Spack pipelines need to take specific actions internally that depend
on whether the pipeline is being run on a PR to spack or a merge to
the develop branch. Pipelines can also run in other repositories,
which represents other possible use cases than just the two mentioned
above. This PR creates a "SPACK_PIPELINE_TYPE" gitlab variable which
is propagated to rebuild jobs, and is also used internally to determine
which pipeline-specific tasks to run.
One goal of the PR is fix an issue where rebuild jobs which failed on
develop pipelines did not properly report the broken full hash to the
"broken-specs-url".
* remove blueos check on cuda variant, fix typo
* restore necessary compiler guard
* remove axom+cuda from testing because it only partially works outside ppc systems
Add a new "spack audit" command. This command can check for issues
with configuration or with packages and is intended to help a
user debug a failed Spack build.
In some cases the reported issues are always errors but are too
costly to check for (e.g. packages that specify missing variants on
dependencies). In other cases the issues may be legitimate but
uncommon usage of Spack and we want to be sure the user intended the
behavior (e.g. duplicate compiler definitions).
Audits are grouped by theme, and for now the two themes are packages
and configuration. For example you can run all available audits
on packages with "spack audit packages". It is intended that in
the future users will be able to define their own audits.
The package audits are good candidates for running in package_sanity
(i.e. they could catch bugs in user-submitted packages before they
are merged) but that is left for a later PR.
Building magma has been failing consistently and is currently
blocking PRs from being merged. Disable that spec while we
investigate the failure and work on a fix.
This should get us most of the way there to support using monitor during a spack container build, for both Singularity and Docker. Some quick notes:
### Docker
Docker works by way of BUILDKIT and being able to specify --secret. What this means is that you can prefix a line with a mount of type secret as follows:
```bash
# Install the software, remove unnecessary deps
RUN --mount=type=secret,id=su --mount=type=secret,id=st cd /opt/spack-environment && spack env activate . && export SPACKMON_USER=$(cat /run/secrets/su) && export SPACKMON_TOKEN=$(cat /run/secrets/st) && spack install --monitor --fail-fast && spack gc -y
```
Where the id for one or more secrets corresponds to the file mounted at `/run/secrets/<name>`. So, for example, to build this container with su (spackmon user) and sv (spackmon token) defined I would export them on my host and do:
```bash
$ DOCKER_BUILDKIT=1 docker build --network="host" --secret id=st,env=SPACKMON_TOKEN --secret id=su,env=SPACKMON_USER -t spack/container .
```
And when we add `env` to the secret definition that tells the build to look for the secret with id "st" in the environment variable `SPACKMON_TOKEN` for example.
If the user is building locally with a local spack monitor, we also need to set the `--network` to be the host, otherwise you can't connect to it (a la isolation of course.)
## Singularity
Singularity doesn't have as nice an ability to clearly specify secrets, so (hoping this eventually gets implemented) what I'm doing now is providing the user instructions to write the credentials to a file, add it to the container to source, and remove when done.
## Tags
Note that the tags PR https://github.com/spack/spack/pull/23712 will need to be merged before `--monitor-tags` will actually work because I'm checking for the attribute (that doesn't exist yet):
```bash
"tags": getattr(args, "monitor_tags", None)
```
So when that PR is merged to update the argument group, it will work here, and I can either update the PR here to not check if the attribute is there (it will be) or open another one in the case this PR is already merged.
Finally, I added a bunch of documetation for how to use monitor with containerize. I say "mostly working" because I can't do a full test run with this new version until the container base is built with the updated spack (the request to the monitor server for an env install was missing so I had to add it here).
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
this will first support uploads for spack monitor, and eventually could be
used for other kinds of spack uploads
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
* Update of Flecsi Spackage
Update of flecsi spackage to reconcile differences between flecsi@1:1.9
and flecsi@2: for future support purposes
* Removing Unnecessary Conditional
Removing unused conditional. Initially the plan was to switch based on
version in `cmake_args` but this was not necessary as build system
variable names remained mostly the same and conflicts prevent the rest.
For the most part, if a variant is there it does not need to check
against what version of the code is being built.
* Updated CI To Reconcile Flecsi Changes
Updated CI to target flecsi@1.4.2 which best matches the previous
release version and reconciled change in variant name
* e4s ci: enable full e4s
* add llvm-amdgpu to list of specs needing an xlarge tagged runner
* comment out qt and qwt because of intermittent build failures
* remove +rocm specs because rocblas job consistently fails due to infrastructure
This PR allows users to `--export`, `--export-secret`, or both to export GPG keys
from Spack. The docs are updated that include a warning that this usually does not
need to be done.
This addresses an issue brought up in slack, and also represented in #14721.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Currently, module configurations are inconsistent because modulefiles are generated with the configs for the active environment, but are shared among all environments (and spack outside any environment).
This PR fixes that by allowing Spack environments (or other spack config scopes) to define additional sets of modules to generate. Each set of modules can enable either lmod or tcl modules, and contains all of the previously available module configuration. The user defines the name of each module set -- the set configured in Spack by default is named "default", and is the one returned by module manipulation commands in the absence of user intervention.
As part of this change, the module roots configuration moved from the config section to inside each module configuration.
Additionally, it adds a feature that the modulefiles for an environment can be configured to be relative to an environment view rather than the underlying prefix. This will not be enabled by default, as it should only be enabled within an environment and for non-default views constructed with separate projections per-spec.
### Overview
The goal of this PR is to make gitlab pipeline builds (especially build failures) more reproducible outside of the pipeline environment. The two key changes here which aim to improve reproducibility are:
1. Produce a `spack.lock` during pipeline generation which is passed to child jobs via artifacts. This concretized environment is used both by generated child jobs as well as uploaded as an artifact to be used when reproducing the build locally.
2. In the `spack ci rebuild` command, if a spec needs to be rebuilt from source, do this by generating and running an `install.sh` shell script which is then also uploaded as a job artifact to be run during local reproduction.
To make it easier to take advantage of improved build reproducibility, this PR also adds a new subcommand, `spack ci reproduce-build`, which, given a url to job artifacts:
- fetches and unzips the job artifacts to a local directory
- looks for the generated pipeline yaml and parses it to find details about the job to reproduce
- attempts to provide a copy of the same version of spack used in the ci build
- if the ci build used a docker image, the command prints a `docker run` command you can run to get an interactive shell for reproducing the build
#### Some highlights
One consequence of this change will be much smaller pipeline yaml files. By encoding the concrete environment in a `spack.lock` and passing to child jobs via artifacts, we will no longer need to encode the concrete root of each spec and write it into the job variables, greatly reducing the size of the generated pipeline yaml.
Additionally `spack ci rebuild` output (stdout/stderr) is no longer internally redirected to a log file, so job output will appear directly in the gitlab job trace. With debug logging turned on, this often results in log files getting truncated because they exceed the maximum amount of log output gitlab allows. If this is a problem, you still have the option to `tee` command output to a file in the within the artifacts directory, as now each generated job exposes a `user_data` directory as an artifact, which you can fill with whatever you want in your custom job scripts.
There are some changes to be aware of in how pipelines should be set up after this PR:
#### Pipeline generation
Because the pipeline generation job now writes a `spack.lock` artifact to be consumed by generated downstream jobs, `spack ci generate` takes a new option `--artifacts-root`, inside which it creates a `concrete_env` directory to place the lockfile. This artifacts root directory is also where the `user_data` directory will live, in case you want to generate any custom artifacts. If you do not provide `--artifacts-root`, the default is for it to create a `jobs_scratch_dir` within your `CI_PROJECT_DIR` (a gitlab predefined environment variable) or whatever is your current working directory if that variable isn't set. Here's the diff of the PR testing `.gitlab-ci.yml` taking advantage of the new option:
```
$ git diff develop..pipelines-reproducible-builds share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
diff --git a/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml b/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
index 579d7b56f3..0247803a30 100644
--- a/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
+++ b/share/spack/gitlab/cloud_pipelines/.gitlab-ci.yml
@@ -28,10 +28,11 @@ default:
- cd share/spack/gitlab/cloud_pipelines/stacks/${SPACK_CI_STACK_NAME}
- spack env activate --without-view .
- spack ci generate --check-index-only
+ --artifacts-root "${CI_PROJECT_DIR}/jobs_scratch_dir"
--output-file "${CI_PROJECT_DIR}/jobs_scratch_dir/cloud-ci-pipeline.yml"
artifacts:
paths:
- - "${CI_PROJECT_DIR}/jobs_scratch_dir/cloud-ci-pipeline.yml"
+ - "${CI_PROJECT_DIR}/jobs_scratch_dir"
tags: ["spack", "public", "medium", "x86_64"]
interruptible: true
```
Notice how we replaced the specific pointer to the generated pipeline file with its containing folder, the same folder we passed as `--artifacts-root`. This way anything in that directory (the generated pipeline yaml, as well as the concrete environment directory containing the `spack.lock`) will be uploaded as an artifact and available to the downstream jobs.
#### Rebuild jobs
Rebuild jobs now must activate the concrete environment created by `spack ci generate` and provided via artifacts. When the pipeline is generated, a directory called `concrete_environment` is created within the artifacts root directory, and this is where the `spack.lock` file is written to be passed to the generated rebuild jobs. The artifacts root directory can be specified using the `--artifacts-root` option to `spack ci generate`, otherwise, it is assumed to be `$CI_PROJECT_DIR`. The directory containing the concrete environment files (`spack.yaml` and `spack.lock`) is then passed to generated child jobs via the `SPACK_CONCRETE_ENV_DIR` variable in the generated pipeline yaml file.
When you don't provide custom `script` sections in your `mappings` within the `gitlab-ci` section of your `spack.yaml`, the default behavior of rebuild jobs is now to change into `SPACK_CONCRETE_ENV_DIR` and activate that environment. If you do provide custom rebuild scripts in your `spack.yaml`, be aware those scripts should do the same thing: assume `SPACK_CONCRETE_ENV_DIR` contains the concretized environment to activate. No other changes to existing custom rebuild scripts should be required as a result of this PR.
As mentioned above, one key change made in this PR is the generation of the `install.sh` script by the rebuild jobs, as that same script is both run by the CI rebuild job as well as exported as an artifact to aid in subsequent attempts to reproduce the build outside of CI. The generated `install.sh` script contains only a single `spack install` command with arguments computed by `spack ci rebuild`. If the install fails, the job trace in gitlab will contain instructions on how to reproduce the build locally:
```
To reproduce this build locally, run:
spack ci reproduce-build https://gitlab.next.spack.io/api/v4/projects/7/jobs/240607/artifacts [--working-dir <dir>]
If this project does not have public pipelines, you will need to first:
export GITLAB_PRIVATE_TOKEN=<generated_token>
... then follow the printed instructions.
```
When run locally, the `spack ci reproduce-build` command shown above will download and process the job artifacts from gitlab, then print out instructions you can copy-paste to run a local reproducer of the CI job.
This PR includes a few other changes to the way pipelines work, see the documentation on pipelines for more details.
This PR erelies on
~- [ ] #23194 to be able to refer to uninstalled specs by DAG hash~
EDIT: that is going to take longer to come to fruition, so for now, we will continue to install specs represented by a concrete `spec.yaml` file on disk.
- [x] #22657 to support install a single spec already present in the active, concrete environment
I would like to be able to export (and save and then load programatically)
spack blame metadata, so this commit adds a spack blame --json argument,
along with developer docs for it
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
This work will come in two phases. The first here is to allow saving of a local result
with spack monitor, and the second will add a spack monitor command so the user can
do spack monitor upload.
Signed-off-by: vsoch <vsoch@users.noreply.github.com>
Co-authored-by: vsoch <vsoch@users.noreply.github.com>
Currently, module configurations are inconsistent because modulefiles are generated with the configs for the active environment, but are shared among all environments (and spack outside any environment).
This PR fixes that by allowing Spack environments (or other spack config scopes) to define additional sets of modules to generate. Each set of modules can enable either lmod or tcl modules, and contains all of the previously available module configuration. The user defines the name of each module set -- the set configured in Spack by default is named "default", and is the one returned by module manipulation commands in the absence of user intervention.
As part of this change, the module roots configuration moved from the `config` section to inside each module configuration.
Additionally, it adds a feature that the modulefiles for an environment can be configured to be relative to an environment view rather than the underlying prefix. This will not be enabled by default, as it should only be enabled within an environment and for non-default views constructed with separate projections per-spec.
TODO:
- [x] code changes to support multiple module sets
- [x] code changes to support modules relative to a view
- [x] Tests for multiple module configurations
- [x] Tests for modules relative to a view
- [x] Backwards compatibility for module roots from config section
- [x] Backwards compatibility for default module set without the name specified
- [x] Tests for backwards compatibility
In an active concretize environment, support installing one or more
cli specs only if they are already present in the environment. The
`--no-add` option is the default for root specs, but optional for
dependency specs. I.e. if you `spack install <depspec>` in an
environment, the dependency-only spec `depspec` will be added as a
root of the environment before being installed. In addition,
`spack install --no-add <spec>` fails if it does not find an
unambiguous match for `spec`.
This provides initial support for [spack monitor](https://github.com/spack/spack-monitor), a web application that stores information and analysis about Spack installations. Spack can now contact a monitor server and upload analysis -- even after a build is already done.
Specifically, this adds:
- [x] monitor options for `spack install`
- [x] `spack analyze` command
- [x] hook architecture for analyzers
- [x] separate build logs (in addition to the existing combined log)
- [x] docs for spack analyze
- [x] reworked developer docs, with hook docs
- [x] analyzers for:
- [x] config args
- [x] environment variables
- [x] installed files
- [x] libabigail
There is a lot more information in the docs contained in this PR, so consult those for full details on this feature.
Additional tests will be added in a future PR.
PRs that change only package recipes will only run tests under "package_sanity.py" and without coverage. This should result in a huge drop the cpu-time spent in CI for most PRs.
* unit tests: mark slow tests as "maybeslow"
This commit also removes the "network" marker and
marks every "network" test as "maybeslow". Tests
marked as db are maintained, but they're not slow
anymore.
* GA: require style tests to pass before running unit-tests
* GA: make MacOS unit tests fail fast
* GA: move all unit tests into the same workflow, run style tests as a prerequisite
All the unit tests have been moved into the same workflow so that a single
run of the dorny/paths-filter action can be used to ask for coverage based
on the files that have been changed in a PR. The basic idea is that for PRs
that introduce only changes to packages coverage is not necessary, this
resulting in a faster execution of the tests.
Also, for package only PRs slow unit tests are skipped.
Finally, MacOS and linux unit tests are now conditional on style tests passing
meaning that e.g. we won't waste a MacOS worker if we know that the PR has
flake8 issues.
* Addressed review comments
* Skipping slow tests on MacOS for package only recipes
* QA: make tests on changes correct before merging
* Rewrite relative dev_spec paths internally to absolute paths in case of relocation of the environment file
* Test relative paths for dev_path in environments
* Add a --keep-relative flag to spack env create
This ensures that relative paths of develop paths are not expanded to
absolute paths when initializing the environment in a different location
from the spack.yaml init file.
This pull request will add the ability for a user to add a configuration argument on the fly, on the command line, e.g.,:
```bash
$ spack -c config:install_tree:root:/path/to/config.yaml -c packages:all:compiler:[gcc] list --help
```
The above command doesn't do anything (I'm just getting help for list) but you can imagine having another root of packages, and updating it on the fly for a command (something I'd like to do in the near future!)
I've moved the logic for config_add that used to be in spack/cmd/config.py into spack/config.py proper, and now both the main.py (where spack commands live) and spack/cmd/config.py use these functions. I only needed spack config add, so I didn't move the others. We can move the others if there are also needed in multiple places.
This adds a `--path` option to `spack python` that shows the `python`
interpreter that Spack is using.
e.g.:
```console
$ spack python --path
/Users/gamblin2/src/spack/var/spack/environments/default/.spack-env/view/bin/python
```
This is useful for debugging, and we can ask users to run it to
understand what python Spack is picking up via preferences in `bin/spack`
and via the `SPACK_PYTHON` environment variable introduced in #21222.
`spack test list` will show you which *installed* packages can be tested
but it won't show you which packages have tests.
- [x] add `spack test list --all` to show which packages have test methods
- [x] update `has_test_method()` to handle package instances *and*
package classes.
* Allow the bootstrapping of clingo from sources
Allow python builds with system python as external
for MacOS
* Ensure consistent configuration when bootstrapping clingo
This commit uses context managers to ensure we can
bootstrap clingo using a consistent configuration
regardless of the use case being managed.
* Github actions: test clingo with bootstrapping from sources
* Add command to inspect and clean the bootstrap store
Prevent users to set the install tree root to the bootstrap store
* clingo: documented how to bootstrap from sources
Co-authored-by: Gregory Becker <becker33@llnl.gov>
This allows for quickly configuring a spack install/env to use upstream packages by default. This is particularly important when upstreaming from a set of officially supported spack installs on a production cluster. By configuring such that package preferences match the upstream, you ensure maximal reuse of existing package installations.
Fixes for gitlab pipelines
* Remove accidentally retained testing branch name
* Generate pipeline w/out debug mode
* Make jobs interruptible for auto-cancel pending
* Work around concretization conflicts
Drops:
* C_INCLUDE_PATH
* CPLUS_INCLUDE_PATH
* LIBRARY_PATH
* INCLUDE
We already decided to use C_INCLUDE_PATH, CPLUS_INCLUDE_PATH, INCLUDE over CPATH here:
https://github.com/spack/spack/pull/14749
However, none of these flags apply to Fortran on Linux. So for consistency it seems better to make the user use -I and -L flags by hand or through pkgconfig.