In #31618 the idea was to determine the file extension heuristically by dropping query params etc from a url and then consider it as a file path. That broke for URLs that only have query params like http://example.com/?patch=x as it would result in empty string as basename. This PR reverts to the old behavior of saving files as ?patch=x in that case.
Co-authored-by: Stephen Sachs <stesachs@amazon.com>
* llvm: Use variant when clauses for many of the expressed conflicts
* llvm: Remove the shared variant as it wasn't really used
* llvm: Remove unnecessary deps and make explicit the ones that are
* llvm: Cleanup patch conditions
* pocl: Update for llvm cleanup
* unit-test: update unparse package hash with the updated llvm package
* llvm: Fix ppc long double patching and add clarifying comments
`self.archive_file` is (among others) a symlink to a tarball. `extension()` on a
symlink will result in no extension. This patch fixes the behavior introduced in
https://github.com/spack/spack/pull/31618.
Co-authored-by: Stephen Sachs <stesachs@amazon.com>
When
1. Spack installs libtool,
2. system libtool is installed too, and
3. system automake is used
Spack passes system automake's `-I <prefix>` flag to itself, even though
it's a default search path. This takes precedence over spack's libtool
prefix dir. This causes the wrong `libtool.m4` file to be used (since
system libtool is in the same prefix as system automake).
And that leads to error messages about incompatible libtool, something
something LT_INIT.
fixes#31627
spack.mirror.get_all_versions now uses the package class
instead of the package object in its implementation.
Ensure spec is concrete before staging for mirrors
Newer versions of botocore (>=1.23.47) support the full IOBase
interface, so the hacks added to supplement the missing attributes are
no longer needed. Conditionally disable the hacks if they appear to be
unnecessary based on the class hierarchy found at runtime.
* Add connection information to buildcache update command
Ensure that the s3 connection made when attempting to update the content
of a buildcache attempts to use the extra connection information
from the mirror creation.
* Add unique help for endpoint URL argument
Fix copy/paste error for endpoint URL help which was the same as
the access token
* Re-work URL checking for S3 mirrors
Due to the fact that nested bucket URLs would never match the string used
for checking that the mirror is the same, switch the check used.
Sort all mirror URLs by length to have the most specific cases first
and see if the desired URL "starts with" the mirror URL.
* Long line style fixes
Add execptions for long lines and fix other style errors
* Use format() function to rebuild URL
Use the format command to rebuild the url instead of crafing a
formatted string out of known values
* Add early exit for URL checking
When a valid mirror is found, break from the loop
For a long time the module configuration has had a few settings that use
`blacklist`/`whitelist` terminology. We've been asked by some of our users to replace
this with more inclusive language. In addition to being non-inclusive, `blacklist` and
`whitelist` are inconsistent with the rest of Spack, which uses `include` and `exclude`
for the same concepts.
- [x] Deprecate `blacklist`, `whitelist`, `blacklist_implicits` and `environment_blacklist`
in favor of `exclude`, `include`, `exclude_implicits` and `exclude_env_vars` in module
configuration, to be removed in Spack v0.20.
- [x] Print deprecation warnings if any of the deprecated names are in module config.
- [x] Update tests to test old and new names.
- [x] Update docs.
- [x] Update `spack config update` to fix this automatically, and include a note in the error
that you can use this command.
Python's built-in tarfile support doesn't address some general
cases of malformed tarfiles that are already handled by the system
'tar' utility; until these can be addressed, use that exclusively.
The goal of this PR is to make clearer where we need a package object in Spack as opposed to a package class.
We currently instantiate a lot of package objects when we could make do with a class. We should use the class
when we only need metadata, and we should only instantiate and us an instance of `PackageBase` at build time.
Modifications:
- [x] Remove the `spack.repo.get` convenience function (which was used in many places, and not really needed)
- [x] Use `spack.repo.path.get_pkg_class` wherever possible
- [x] Try to route most of the need for `spack.repo.path.get` through `Spec.package`
- [x] Introduce a non-data descriptor, that can be used as a decorator, to have "class level properties"
- [x] Refactor unit tests that had to be modified to reduce code duplication
- [x] `Spec.package` and `Repo.get` now require a concrete spec as input
- [x] Remove `RepoPath.all_packages` and `Repo.all_packages`
There's a race condition in `remove()` as the lockfile is removed after
releasing the lock, which is a problem when another process acquires a
write lock during deletion.
Also simplify life a bit in multiprocessing when a file is possibly
removed multiple times, which currently is an error on the second
deletion, so the proposed fix is to make remove(...) idempotent and not
error when deleting non-existing cache entries.
Don't tests for existence of lockfile, cause windows/linux behavior is different
Oversight in #31433, the non-phony `env` target was missing a file being
created for it, which can cause make to infinitely loop when including
multiple generated makefiles.
When no default editor is installed and no environment variable is set,
which_string would return None and this would be passed to os.execv
resulting in a TypeError. The message presented to the user would be:
Error: execv: path should be string, bytes or os.PathLike,
not NoneType
This change checks that which_string has returned successfully before
attempting to execute the result, resulting in a new error message:
Error: No text editor found! Please set the VISUAL and/or EDITOR
environment variable(s) to your preferred text editor.
It's not strictly necessary, but I've also changed try_exec to catch
all errors rather than just OSErrors. This would have provided slightly
more context for the original error message.
There were two choices: 1) remove '-p' from '-a' or 2) allow monkeypatching
the cleaning of the python cache since clean's test_function_calls isn't
supposed to be actually cleaning anything.
This commit supports the latter and adds a test case for `-p`.
Release branches and tags run protected pipelines, and we noticed
that those pipelines were generating all jobs in the stack, even
when the mirror contained all the built specs and an up to date
index. The problem was caused because the override mirror was
not present in spacks mirror configuration at the time when the
binary_distribution.update() method was called. This fixes that
by always adding the mirror override, if present, to the list of
configured mirrors.
* remove unhelpful comment
* Filter compiler duplicates while reading manifest
* more-specific version matching edited to use module-specific version (to avoid an issue where a user might add a compiler with the same version to the initial test configuration
* PythonPackage: add default libs/headers attributes
* Style fix
* libs and headers should be properties
* Check both platlib and include
* Fix variable reference
Building on #24639, this allows versions to be prefixed by `git.`. If a version begins `git.`, it is treated as a git ref, and handled as git commits are starting in the referenced PR.
An exception is made for versions that are `git.develop`, `git.main`, `git.master`, `git.head`, or `git.trunk`. Those are assumed to be greater than all other versions, as those prefixed strings are in other contexts.
This commit adds some changes which improve use of Spack-installed
oneAPI packages with Spack-generated modules, but not within Spack
(e.g. if you install some of these packages with Spack, then load
their associated modules to build other packages outside of Spack).
The majority of the PR diff is refactoring. The functional changes
are:
* intel-oneapi-mkl:
* setup_run_environment: update Intel compiler flags to RPATH the
mkl libs
* intel-oneapi-compilers: update the compiler configuration to RPATH
libraries installed by this package (note that Spack already handled
this when installing dependent packages with Spack, but this is
specifically to use the intel-oneapi-compilers package outside
of Spack). Specifically:
* inject_rpaths: this modifies the binaries installed as part of
the intel-oneapi-compilers package to RPATH libraries provided
by this package
* extend_config_flags: this instructs the compiler executables
provided by this package to RPATH those same libraries
Refactoring includes:
* intel-oneapi-compilers: in addition to the functional changes,
a large portion of this diff is reorganizing the creation of
resources/archives downloaded for the install
* The base oneAPI package renamed component_path, so several packages
changed as a result:
* intel-oneapi-dpl
* intel-oneapi-dnn
* extrae
* intel-oneapi-mpi:
* Perform file filtering in one pass rather than two
Allow `spack external find` (with no extra args) to proceed if the manifest file exists but
without sufficient permissions; in that case, print a warning. Also add a test for that behavior.
TODOs:
- [x] continue past any exception raised during manifest parsing as part of `spack external find`,
except for CTRL-C (and other errors that indicate immediate program termination)
- [x] Semi-unrelated but came up when discussing this with the user who reported this issue to
me: the manifest parser now accepts older schemas
See: https://github.com/spack/spack/issues/31191
fixes#30997
Instead of giving a penalty of 30 to all nodes when preferences
are not package specific, give a penalty of 100 to all targets
of a node where we have package specific preferences, if the target
is not explicitly preferred.
* Fixed a bug in the 'external find --all' command where the call failed
to find packages by both executable and library. The bug was that the
call `path.all_packages()` incorrectly turned the variable
`packages_to_check` into a generator rather than keeping it a list.
Thus the second call to `detection.by_library` had no work to do.
* Fixed the help message for the find external and compiler commands as
well as others that used the `scopes_metavar` field to define where
the results should be stored in configuration space. Specifically,
the fact that configuration could be added to the environment was not
mentioned in the help message.
* add test to verify fix works
* fix spec cflags/variants parsing test (breaking change)
* fix `spack spec` arg quoting issue
* add error report for deprecated cflags coalescing
* use .group(n) vs subscript regex group extraction for 3.5 compat
* add random test for untested functionality to pass codecov
* fix new test failure since rebase
Fix a bug introduced in #21720. `spack_json.dump()` calls `_strify()` on dictionaries to
convert `unicode` to `str`, but it constructs `dict` objects instead of
`collections.OrderedDict` objects, so in Python 2 (or earlier versions of 3) it can
scramble dictionary order.
This can cause hashes to differ between Python 2 and Python 3, or between Python 3.7
and earlier Python 3's.
- [x] use `OrderedDict` in `_strify`
- [x] add a regression test
The "submodules" argument of the "version" directive can now accept
a callable that returns a list of submodules, in addition to the usual
Boolean values
* bootstrap: account for disabled sources
Fix a bug introduced in #30192, which effectively skips
any prescription on disabled bootstrapping sources.
* Add unit test to avoid regression
Fixes#31021
With #25185, we no longer default to using tar when we can't
determine the extension type, opting to fail instead.
This broke fetching for the pcre package, where we couldn't determine
the extension. To determine the extension, we were attempting to
extract it from the destination filename; however, this file name
may omit details of the origin URL that are required to determine the
extension, so instead we examine the URL directly.
This also updates the decompressor_for method not to set ext=None
by default: it must now always be set by the caller.
Most package installations include compressed source files. This
adds support for common archive types on Windows:
* Add support for using system 7zip functionality to decompress .Z
files when available (and on Windows, use 7zip for .xz archives)
* Default to using built-in Python support for tar/bz2 decompression
(note that Python tar documentation mentions preservation of file
permissions)
* Add tests for decompression support
* Extract logic for handling exploding archives (i.e. compressed
archives that expand to more than one base file) into an
exploding_archive_catch context manager in the filesystem module
Spack's staging logic constructs a file path based on a URL. The URL
may contain characters which are not allowed in valid file paths on
the system (e.g. Windows prohibits ':' and '?' among others). This
commit adds a function to remove such offending characters (but
otherwise preserves the URL string when constructing a file path).
Updates to improve Spack-generated modules for Intel oneAPI compilers:
* intel-oneapi-compilers set CC etc.
* Add a new package intel-oneapi-compilers-classic which can be used to
generate a module which sets CC etc. to older compilers (e.g. icc)
* lmod module logic now updated to treat the intel-oneapi-compilers*
packages as compilers
Explicitly import package utilities in all packages, and corresponding fallout.
This includes:
* rename `spack.package` to `spack.package_base`
* rename `spack.pkgkit` to `spack.package`
* update all packages in builtin, builtin_mock and tutorials to include `from spack.package import *`
* update spack style
* ensure packages include the import
* automatically add the new import and remove any/all imports of `spack` and `spack.pkgkit`
from packages when using `--fix`
* add support for type-checking packages with mypy when SPACK_MYPY_CHECK_PACKAGES
is set in the environment
* fix all type checking errors in packages in spack upstream
* update spack create to include the new imports
* update spack repo to inject the new import, injection persists to allow for a deprecation period
Original message below:
As requested @adamjstewart, update all packages to use pkgkit. I ended up using isort to do this,
so repro is easy:
```console
$ isort -a 'from spack.pkgkit import *' --rm 'spack' ./var/spack/repos/builtin/packages/*/package.py
$ spack style --fix
```
There were several line spacing fixups caused either by space manipulation in isort or by packages
that haven't been touched since we added requirements, but there are no functional changes in here.
* [x] add config to isort to make sure this is maintained going forward
referred targets are currently the only minimization criteria for Spack for which we allow
negative values. That means Spack may be incentivized to add nodes to the DAG if they
match the preferred target.
This PR re-norms the minimization criteria so that preferred targets are weighted from 0,
and default target weights are offset by the number of preferred targets per-package to
calculate node_target_weight.
Also fixes a bug in the test for preferred targets that was making the test easier to pass
than it should be.
This PR supports the creation of securely signed binaries built from spack
develop as well as release branches and tags. Specifically:
- remove internal pr mirror url generation logic in favor of buildcache destination
on command line
- with a single mirror url specified in the spack.yaml, this makes it clearer where
binaries from various pipelines are pushed
- designate some tags as reserved: ['public', 'protected', 'notary']
- these tags are stripped from all jobs by default and provisioned internally
based on pipeline type
- update gitlab ci yaml to include pipelines on more protected branches than just
develop (so include releases and tags)
- binaries from all protected pipelines are pushed into mirrors including the
branch name so releases, tags, and develop binaries are kept separate
- update rebuild jobs running on protected pipelines to run on special runners
provisioned with an intermediate signing key
- protected rebuild jobs no longer use "SPACK_SIGNING_KEY" env var to
obtain signing key (in fact, final signing key is nowhere available to rebuild jobs)
- these intermediate signatures are verified at the end of each pipeline by a new
signing job to ensure binaries were produced by a protected pipeline
- optionallly schedule a signing/notary job at the end of the pipeline to sign all
packges in the mirror
- add signing-job-attributes to gitlab-ci section of spack environment to allow
configuration
- signing job runs on special runner (separate from protected rebuild runners)
provisioned with public intermediate key and secret signing key
Old concrete specs were slipping through in `_assign_hash`, and `package_hash` was
attempting to recompute a package hash when we could not know the package a time
of concretization.
Part of this was that the logic for `_assign_hash` was hard to understand -- it was
called twice from `_finalize_concretization` and had special cases for both args it
was called with. It's much easier to understand the logic here if we just inline it.
- [x] Get rid of `_assign_hash` and just integrate it with `_finalize_concretization`
- [x] Don't call `_package_hash` at all for already-concrete specs.
- [x] Add regression test.
This PR introduces a new build cache layout and package format, with improvements for
both efficiency and security.
## Old Format
Currently a binary package consists of a `spec.json` file at the root and a `.spack` file,
which is a `tar` archive containing a copy of the `spec.json` format, possibly a detached
signature (`.asc`) file, and a tar-gzip compressed archive containing the install tree.
```
build_cache/
# metadata (for indexing)
<arch>-<compiler>-<name>-<ver>-24zvipcqgg2wyjpvdq2ajy5jnm564hen.spec.json
<arch>/
<compiler>/
<name>-<ver>/
# tar archive
<arch>-<compiler>-<name>-<ver>-24zvipcqgg2wyjpvdq2ajy5jnm564hen.spack
# tar archive contents:
# metadata (contains sha256 of internal .tar.gz)
<arch>-<compiler>-<name>-<ver>-24zvipcqgg2wyjpvdq2ajy5jnm564hen.spec.json
# signature
<arch>-<compiler>-<name>-<ver>-24zvipcqgg2wyjpvdq2ajy5jnm564hen.spec.json.asc
# tar.gz-compressed prefix
<arch>-<compiler>-<name>-<ver>-24zvipcqgg2wyjpvdq2ajy5jnm564hen.tar.gz
```
After this change, the nesting has been removed so that the `.spack` file is the
compressed archive of the install tree. Now signed binary packages, will take the
form of a clearsigned `spec.json` file (a `spec.json.sig`) at the root, while unsigned
binary packages will contain a `spec.json` at the root.
## New Format
```
build_cache/
# metadata (for indexing, contains sha256 of .spack file)
<arch>-<compiler>-<name>-<ver>-24zvipcqgg2wyjpvdq2ajy5jnm564hen.spec.json
# clearsigned spec.json metadata
<arch>-<compiler>-<name>-<ver>-24zvipcqgg2wyjpvdq2ajy5jnm564hen.spec.json.sig
<arch>/
<compiler>/
<name>-<ver>/
# tar.gz-compressed prefix (may support more compression formats later)
<arch>-<compiler>-<name>-<ver>-24zvipcqgg2wyjpvdq2ajy5jnm564hen.spack
```
## Benefits
The major benefit of this change is that the signatures on binary packages can be
verified without:
1. Having to download the tarball, or
2. having to extract an unknown tarball.
(1) is an improvement in efficiency; (2) is a security fix: we now ensure that we trust the
binary before we try to run it through `tar`, which avoids potential attacks.
## Backward compatibility
Also after this change, spack should still be able to handle the previous buildcache
structure and binary mirrors with mixed layouts.
This PR builds on #28392 by adding a convenience command to create a local mirror that can be used to bootstrap Spack. This is to overcome the inconvenience in setting up this mirror manually, which has been reported when trying to setup Spack on air-gapped systems.
Using this PR the user can create a bootstrapping mirror, on a machine with internet access, by:
% spack bootstrap mirror --binary-packages /opt/bootstrap
==> Adding "clingo-bootstrap@spack+python %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "gnupg@2.3: %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "patchelf@0.13.1:0.13.99 %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding binary packages from "https://github.com/alalazo/spack-bootstrap-mirrors/releases/download/v0.1-rc.2/bootstrap-buildcache.tar.gz" to the mirror at /opt/bootstrap/local-mirror
To register the mirror on the platform where it's supposed to be used run the following command(s):
% spack bootstrap add --trust local-sources /opt/bootstrap/metadata/sources
% spack bootstrap add --trust local-binaries /opt/bootstrap/metadata/binaries
The mirror has to be moved over to the air-gapped system, and registered using the commands shown at prompt. The command has options to:
1. Add pre-built binaries downloaded from Github (default is not to add them)
2. Add development dependencies for Spack (currently the Python packages needed to use spack style)
* bootstrap: refactor bootstrap.yaml to move sources metadata out
* bootstrap: allow adding/removing custom bootstrapping sources
This operation can be performed from the command line since
new subcommands have been added to `spack bootstrap`
* Add --trust argument to spack bootstrap add
* Add a command to generate a local mirror for bootstrapping
* Add a unit test for mirror creation
Currently, environments can either be concretized fully together or fully separately. This works well for users who create environments for interoperable software and can use `concretizer:unify:true`. It does not allow environments with conflicting software to be concretized for maximal interoperability.
The primary use-case for this is facilities providing system software. Facilities provide multiple MPI implementations, but all software built against a given MPI ought to be interoperable.
This PR adds a concretization option `concretizer:unify:when_possible`. When this option is used, Spack will concretize specs in the environment separately, but will optimize for minimal differences in overlapping packages.
* Add a level of indirection to root specs
This commit introduce the "literal" atom, which comes with
a few different "arities". The unary "literal" contains an
integer that id the ID of a spec literal. Other "literals"
contain information on the requests made by literal ID. For
instance zlib@1.2.11 generates the following facts:
literal(0,"root","zlib").
literal(0,"node","zlib").
literal(0,"node_version_satisfies","zlib","1.2.11").
This should help with solving large environments "together
where possible" since later literals can be now solved
together in batches.
* Add a mechanism to relax the number of literals being solved
* Modify spack solve to display the new criteria
Since the new criteria is above all the build criteria,
we need to modify the way we display the output.
Originally done by Greg in #27964 and cherry-picked
to this branch by the co-author of the commit.
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
* Inject reusable specs into the solve
Instead of coupling the PyclingoDriver() object with
spack.config, inject the concrete specs that can be
reused.
A method level function takes care of reading from
the store and the buildcache.
* spack solve: show output of multi-rounds
* add tests for best-effort coconcretization
* Enforce having at least a literal being solved
Co-authored-by: Greg Becker <becker33@llnl.gov>
Previously the regex was only checking for presence of quotes as a beginning
or end character and not a matching set. This erroneously identified the
following *single* argument as being quoted:
source bashenvfile &> /dev/null && python3 -c "import os, json; print(json.dumps(dict(os.environ)))"
Add a config option to strip `-Werror*` or `-Werror=*` from compile lines everywhere.
```yaml
config:
keep_werror: false
```
By default, we strip all `-Werror` arguments out of compile lines, to avoid unwanted
failures when upgrading compilers. You can re-enable `-Werror` in your builds if
you really want to, with either:
```yaml
config:
keep_werror: all
```
or to keep *just* specific `-Werror=XXX` args:
```yaml
config:
keep_werror: specific
```
This should make swapping in newer versions of compilers much smoother when
maintainers have decided to enable `-Werror` by default.
Parse error information is kept for specs, but it doesn't seem like we propagate it
to the user when we encounter an error. This fixes that.
e.g., for this error in a package:
```python
depends_on("python@:3.8", when="0.900:")
```
Before, with no context and no clue that it's even from a particular spec:
```
==> Error: Unexpected token: ':'
```
With this PR:
```
==> Error: Unexpected token: ':'
Encountered when parsing spec:
0.900:
^
```
* Introduce concretizer:unify option to replace spack:concretization
* Deprecate concretization
* Make spack:concretization overrule concretize:unify for now
* Add environment update logic to move from spack:concretization to spack:concretizer:reuse
* Migrate spack:concretization to spack:concretize:unify in all locations
* For new environments make concretizer:unify explicit, so that defaults can be changed in 0.19
The oneapi and dpcpp compilers are essentially the same except for which
binary is used foc CXX. Spack will detect them as "mixed toolchain" and
not inject compiler optimization flags. This will be needed once
archspec has entries for the oneapi and dpcpp compilers. This PR detects
when dpcpp and oneapi are in the toolchains list and explicitly sets
`is_mixed_toolchain` to `False`.
Error messages for the clingo concretizer have proven challenging. The current messages are incredibly vague and often don't help users at all. Unsat cores in clingo are not guaranteed to be minimal, and lead to cores that are either not useful or need to be post-processed for hours to reach a minimal core.
Following up on an idea from a slack conversation with kwryankrattiger on slack, this PR takes a new approach. We eliminate most integrity constraints and minima/maxima on choice rules in clingo, and instead force invalid states to imply an error predicate. The error predicate can include context on the cause of the error (Package, Version, etc). These error predicates are then heavily optimized against, to ensure that we do not include error facts in the solution when a solution with no error facts could be generated. When post-processing the clingo solution to construct specs, any error facts cause the program to raise an exception. This leads to much more legible error messages. Each error predicate includes a priority and an error message. The error message is formatted by the remaining arguments to produce the error message. The priority is used to ensure that when clingo has a choice of which rules to violate, it chooses the one which will be most informative to the user.
Performance:
"fresh" concretizations appear to suffer a ~20% performance penalty under this branch, while "reuse" concretizations see a speedup of around 33%.
Possible optimizations if users still see unhelpful messages:
There are currently 3 levels of priority of the error messages. Additional priorities are possible, and can allow us finer granularity to ensure more informative error messages are provided in lieu of less informative ones.
Future work:
Improve tests to ensure that every possible rule implying an error message is exercised
A non-existent upstream should not be fatal: it could only mean it is
not deployed yet. In the meantime, it should not block the user to
rebuild anything it needs.
A warning is still emitted, to let the user decide if this is ok or not.
Fixes missing chgrp on symlinks in package installations, and errors on
symlinks referencing non-existent or non-writable locations.
Note: `os.chown(.., follow_symlinks=False)` is python3 only, but
`os.lchown` exists in both versions.
* Change license dir from hard-coded to a configurable item
* Change config item to be a string not an array
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Trying to compute `dag_hash()` or `package_hash()` on a concrete spec that doesn't have
a `_package_hash` attribute would attempt to recompute the package hash.
This most commonly manifests as a failed lookup of a namespace if you attempt to uninstall
or compute the hashes of packages in exsternal repositories that aren't registered, e.g.:
```console
> spack spec --json c/htno
==> Error: Unknown namespace: myrepo
```
While it wouldn't change the already-assigned `dag_hash` value, this behavior is
incorrect, since the package file for a previously concrete spec:
1. might have changed since concretization,
2. might not exist anymore, or
3. might just not be findable by Spack.
This PR ensures that the package hash can't be computed on older concrete specs. Instead
of calling `package_hash()` from within `to_node_dict()`, we now check for the `_package_hash`
attribute and only add the package_hash to the spec record if it's there.
This PR also handles the tricky semantics of computing `package_hash()` at concretization
time. We have to compute it *before* marking the spec concrete so that `to_node_dict` can
use it. But this means that the logic for `package_hash()` can't rely on `spec.concrete`,
as it is called *during* concretization. Instead of checking for concreteness, `package_hash()`
now checks `_patches_assigned()` to determine whether it should add them to the package
hash.
- [x] Add an assert to `package_hash()` so it can't be called on specs for which it
would be wrong.
- [x] Add an `_assign_hash()` method to handle tricky semantics of `package_hash`
and `dag_hash`.
- [x] Rework concretization to call `_assign_hash()` before and after marking specs
concrete.
- [x] Rework content hash part of package hash to check for `_patches_assigned()`
instead of `spec.concrete`.
- [x] regression test
Previously we sorted by hash values for `spack graph`, but changing hashes can make the
test brittle and the node order seem nondeterministic to users.
- [x] Sort nodes in `spack graph` by the default edge order, which takes into account
parent and child names as well as dependency types.
- [x] Update ASCII test output for new order.
The dependency check currently checks whether there are only build
dependencies left for a particular package. However, the database also
contains uninstalled packages, which can cause the check to fail.
For instance, with `bison` and `flex` having already been uninstalled,
`m4` will have the following dependents:
```
bison ('build', 'run')--> m4
flex ('build',)--> m4
libnl ('build',)--> m4
```
`bison` and `flex` should be ignored in this case because they are not
installed anymore.
Fixes#30673
#24556 merged in support for Python's .zip file support via ZipFile.
However as per #30200 ZipFile does not preserve file permissions of
the extracted contents. This PR returns to using the `unzip`
executable on non-Windows systems (as was the case before #24556)
and now uses `tar` on Windows to extract .zip files.
We previously had checks in `directory_layout` to check for build-dependency
conflicts when we weren't storing build dependencies. We don't need
those anymore; we can just rely on the DAG hash now that it includes everything
we know about each spec.
- [x] Remove vestigial code for checking installed spec against concrete spec
in `ensure_installed()`
- [x] Remove `SpecHashCollisionError` -- if specs have the same hash now, they're
the same as far as `DirectoryLayout` should be concerned.
- [x] Convert spec comparison to `dag_hash()` comparison when adding extensions.
The database now stores full hashes, so we need to adjust the criteria we use to
determine if something can be uninstalled. Specifically, it's ok to uninstall thing that
have remaining build-only dependents.
With the original DAG hash, we did not store build dependencies in the database, but
with the full DAG hash, we do. Previously, we'd never tell the concretizer about build
dependencies of things used by hash, because we never had them. Now, we have to avoid
telling the concretizer about them, or they'll unnecessarily constrain build
dependencies for new concretizations.
- [x] Make database track all dependencies included in the `dag_hash`
- [x] Modify spec_clauses so that build dependency information is optional
and off by default.
- [x] `spack diff` asks `spec_clauses` for build dependencies for completeness
- [x] Modify `concretize.lp` so that reuse optimization doesn't affect fresh
installations.
- [x] Modify concretizer setup so that it does *not* prioritize installed versions
over package versions. We don't need this with reuse, so they're low priority.
- [x] Fix `test_installed_deps` for full hash and new concretizer (does not work
for old concretizer with full hash -- leave this for later if we need it)
- [x] Move `test_installed_deps` mock packages to `builtin.mock` for easier debugging
with `spack -m`.
- [x] Fix `test_reuse_installed_packages_when_package_def_changes` for full hash
- [x] update test to use `build_hash` instead of `dag_hash`, as we're testing for
graph structure, and specifically NOT testing for package changes.
- [x] make hash descriptors callable on specs to simplify syntax for invoking them
- [x] make `Spec.spec_hash()` public
This removes all but one usage of runtime hash. The runtime hash was being used to write
historical lockfiles for tests, but we don't need it for that; we can just save those
lockfiles.
- [x] add legacy lockfiles for v1, v2, v3
- [x] fix bugs with v1 lockfile tests (the dummy lockfile we were writing was not actually
a v1 lockfile because it used the new spec file format).
- [x] remove all but one runtime_hash usage -- that one needs a small rework of the
concretizer to really fix, as it's about separate concretization of build
dependencies.
- [x] Document the history of the lockfile format in `environment/__init__.py`
Some test cases had to be modified in a kludgy way so that abstract specs made
concrete would have versions on them. We shouldn't *need* to do this, as the
only reason we care is because the content hash has to be able to get an archive
for a version.
This modifies the content hash so that it can be called on abstract specs,
including only relevant content.
This does NOT add a partial content hash to the DAG hash, as we do not really
want that -- we don't need in-memory spec hashes to need to load package files.
It just makes `Package.content_hash()` less prickly and tests easier to
understand.
`spack monitor` expects a field called `spec_full_hash`, so we shouldn't change that.
Instead, we can pass a `dag_hash` (which is now the full hash) but not change the field
name.
`hashes_final` was used to indicate when a spec was concrete but possibly lacked
`full_hash` or `build_hash` fields. This was only necessary because older Spacks
didn't generate them, and we want to avoid recomputing them, as we likely do not
have the same package files as existed at concretization time.
Now, we don't need to do that -- there is only the DAG hash and specs are either
concrete and have a `dag_hash`, or not concrete and have no `dag_hash`. There's
no middle ground.
Without some enforcement of spec ordering, python 2 produced
different results in the affected test than did python 3. This
change makes the arbitrary but reproducible decision to sort
the specs by their lockfile key alphabetically.
The full hash appears twice in the spec dict now, replacing just
the value replaces it under "hash" and "full_hash". Only replace
the one that appears after "full_hash".
I'm actually not sure what purpose this test served, so maybe it
could be removed, as it may be testing some distinction between
full and dag hash which no longer exists.
For a long time, Spack has used a coarser hash to identify packages
than it likely should. Packages are identified by `dag_hash()`, which
includes only link and run dependencies. Build dependencies are
stripped before hashing, and we have notincluded hashes of build
artifacts or the `package.py` files used to build. This means the
DAG hash actually doesn't represent all the things Spack can build,
and it reduces reproducibility.
We did this because, in the early days, users were (rightly) annoyed
when a new version of CMake, autotools, or some other build dependency
would necessitate a rebuild of their entire stack. Coarsening the hash
avoided this issue and enabled a modicum of stability when only reusing
packages by hash match.
Now that we have `--reuse`, we don't need to be so careful. Users can
avoid unnecessary rebuilds much more easily, and we can add more
provenance to the spec without worrying that frequent hash changes
will cause too many rebuilds.
This commit starts the refactor with the following major change:
- [x] Make `Spec.dag_hash()` include build, run, and link
dependencides and the package hash (it is now equivalent to
`full_hash()`).
It also adds a couple of bugfixes for problems discovered during
the switch:
- [x] Don't add a `package_hash()` in `to_node_dict()` unless
the spec is concrete (fixes breaks on abstract specs)
- [x] Don't add source ids to the package hash for packages without
a known fetch strategy (may mock packages are like this)
- [x] Change how `Spec.patches` is memoized. Using
`llnl.util.lang.memoized` on `Spec` objects causes specs to
be stored in a `dict`, which means they need a hash. But,
`dag_hash()` now includes patch `sha256`'s via the package
hash, which can lead to infinite recursion
`spack pkg list` tests were broken by #29593 for cases when your `builtin.mock` repo
still has stale backup files (or, really, stale directories) sitting around. This
happens if you switch branches a lot. In this case, things like this were causing
erroneous packages in the mock listing:
```
var/spack/repos/builtin.mock/packages/
foo/
package.py~
```
- [x] make `list_packages` consider only directories with one-deep `package.py` files.
Reworking lua to allow easier substitution of the base lua implementation.
Also adding in a maintained version of luajit and re-factoring the entire stack
to use a custom build-system to centralize functionality like environment
variable management and luarocks installation.
The `lua-lang` virtual is now versioned so that a package that requires
Lua 5.1 semantics can get any lua, but one that requires 5.2 will only
get upstream lua.
The luaposix package requires lua-bit32, but only when built with a
lua conforming to version 5.1. This adds the package, and the
dependencies, but exposed a problem with luarocks dependency
detection. Since we're installing each package in its own "tree" and
there's no environment variable to list extra trees, spack now
generates a luarocks config file that lists all the trees of all the
dependencies, and references it by setting `LUAROCKS_CONFIG`
in the build environment of every LuaPackage. This allows luarocks
to find the spack installed dependencies correctly rather than
trying (and failing) to download them.
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Tom Scogland <tscogland@llnl.gov>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Some of our `git` tests still fail when `init.defaultBranch` is set to something other
than `master`.
- [x] get rid of all hard-coded `master` refs
- [x] Use `'default'` to key tests that use the default branch
When running on Windows, Spack may generate files in the stage/install
prefixes that do not have write permissions, which prevents the
removal of those directories (e.g. when cleaning stages or uninstalling).
There should be a refactoring to avoid this in the first place, but that
is assumed to be longer term, so the temporary fix is to make such files
writable if they are not. This PR:
* Automatically handles these permissions errors when uninstalling
packages from the Spack root (makes then writable)
* Updates similar already-existing logic when removing Spack-managed
stage directories (the error-handling was assuming all errors were
permissions errors and was therefore handling other errors
inappropriately)
Note: these permissions issues only appear on Windows so this logic is
only applied there (permissions are not modified for this purpose on
Linux etc.).
This also adds special handling for a case where calling `isdir`
on an `os.DirEntry` object would fail for improperly-created symlinks
(e.g. on Windows, using `os.symlink` without `target_is_directory=True`).
Note this specific issue only came up when enabling link_tree tests
(specifically `source_merge_visitor_cant_be_cyclical`).
* create function for translating compiler names on specs/compiler entries in manifest
* add tests for translating compiler names on spec/compiler entries
* use higher-level function in test and add comment to prefer testing via higher-level function
* opensuse clingo check should not fail on account of this pr, but I cannot get it to pass by restarting via CI UI
* Force GCC to always provide a C++14 flag
Updated gnu logic so that the c++14 flag for g++ is always propagated.
This fixes issues with build systems that error out if passed an empty
string for a flag.
Engaging in the best kind of software engineering by updating the unit
test to pass with the value it is now passed. This should better match
the expected flag for g++ compiling with the C++14 standard
This ensures that multiple spack instances called from `make` will respect the maximum number of jobs in the POSIX jobserver across packages.
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
* use the init.defaultBranch name, not master
* make tcl and modules/common independent
Both used to use not just the same directory, but the same *file* for
their outputs. In parallel this can cause problems, but it can also
accidentally allow expected failures to pass if the file is left around
by mistake.
* use a non-global misc_cache in tests
* make pkg tests resilient to gitignore
* make source cache and module directories non-global
`make` solves a lot of headaches that would otherwise have to be implemented in Spack:
1. Parallelism over packages through multiple `spack install` processes
2. Orderly output of parallel package installs thanks to `make --sync-output=recurse` or `make -Orecurse` (works well in GNU Make 4.3; macOS is unfortunately on a 16 years old 3.x version, but it's one `spack install gmake` away...)
3. Shared jobserver across packages, which means a single `-j` to rule them all, instead of manually finding a balance between `#spack install processes` & `#jobs per package` (See #30302).
This pr adds the `spack env depfile` command that generates a Makefile with dag hashes as
targets, and dag hashes of dependencies as prerequisites, and a command
along the lines of `spack install --only=packages /hash` to just install
a single package.
It exposes two convenient phony targets: `all`, `fetch-all`. The former installs the environment, the latter just fetches all sources. So one can either use `make all -j16` directly or run `make fetch-all -j16` on a login node and `make all -j16` on a compute node.
Example:
```yaml
spack:
specs: [perl]
view: false
```
running
```
$ spack -e . env depfile --make-target-prefix env | tee Makefile
```
generates
```Makefile
SPACK ?= spack
.PHONY: env/all env/fetch-all env/clean
env/all: env/env
env/fetch-all: env/fetch
env/env: env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww
@touch $@
env/fetch: env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc
@touch $@
env/dirs:
@mkdir -p env/.fetch env/.install
env/.fetch/%: | env/dirs
$(info Fetching $(SPEC))
$(SPACK) -e '/tmp/tmp.7PHPSIRACv' fetch $(SPACK_FETCH_FLAGS) /$(notdir $@) && touch $@
env/.install/%: env/.fetch/%
$(info Installing $(SPEC))
+$(SPACK) -e '/tmp/tmp.7PHPSIRACv' install $(SPACK_INSTALL_FLAGS) --only-concrete --only=package --no-add /$(notdir $@) && touch $@
# Set the human-readable spec for each target
env/%/cdqldivylyxocqymwnfzmzc5sx2zwvww: SPEC = perl@5.34.1%gcc@10.3.0+cpanm+shared+threads arch=linux-ubuntu20.04-zen2
env/%/gv5kin2xnn33uxyfte6k4a3bynhmtxze: SPEC = berkeley-db@18.1.40%gcc@10.3.0+cxx~docs+stl patches=b231fcc arch=linux-ubuntu20.04-zen2
env/%/cuymc7e5gupwyu7vza5d4vrbuslk277p: SPEC = bzip2@1.0.8%gcc@10.3.0~debug~pic+shared arch=linux-ubuntu20.04-zen2
env/%/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: SPEC = diffutils@3.8%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws: SPEC = libiconv@1.16%gcc@10.3.0 libs=shared,static arch=linux-ubuntu20.04-zen2
env/%/yfz2agazed7ohevqvnrmm7jfkmsgwjao: SPEC = gdbm@1.19%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/73t7ndb5w72hrat5hsax4caox2sgumzu: SPEC = readline@8.1%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/trvdyncxzfozxofpm3cwgq4vecpxixzs: SPEC = ncurses@6.2%gcc@10.3.0~symlinks+termlib abi=none arch=linux-ubuntu20.04-zen2
env/%/sbzszb7v557ohyd6c2ekirx2t3ctxfxp: SPEC = pkgconf@1.8.0%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/c4go4gxlcznh5p5nklpjm644epuh3pzc: SPEC = zlib@1.2.12%gcc@10.3.0+optimize+pic+shared patches=0d38234 arch=linux-ubuntu20.04-zen2
# Install dependencies
env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww: env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p: env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk
env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws
env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao: env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu
env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu: env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs
env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs: env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp
env/clean:
rm -f -- env/env env/fetch env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
```
Then with `make -O` you get very nice orderly output when packages are built in parallel:
```console
$ make -Orecurse -j16
spack -e . install --only-concrete --only=package /c4go4gxlcznh5p5nklpjm644epuh3pzc && touch c4go4gxlcznh5p5nklpjm644epuh3pzc
==> Installing zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
...
Fetch: 0.00s. Build: 0.88s. Total: 0.88s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
spack -e . install --only-concrete --only=package /sbzszb7v557ohyd6c2ekirx2t3ctxfxp && touch sbzszb7v557ohyd6c2ekirx2t3ctxfxp
==> Installing pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
...
Fetch: 0.00s. Build: 3.96s. Total: 3.96s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
```
For Perl, at least for me, using `make -j16` versus `spack -e . install -j16` speeds up the builds from 3m32.623s to 2m22.775s, as some configure scripts run in parallel.
Another nice feature is you can do Makefile "metaprogramming" and depend on packages built by Spack. This example fetches all sources (in parallel) first, print a message, and only then build packages (in parallel).
```Makefile
SPACK ?= spack
.PHONY: env
all: env
spack.lock: spack.yaml
$(SPACK) -e . concretize -f
env.mk: spack.lock
$(SPACK) -e . env depfile -o $@ --make-target-prefix spack
fetch: spack/fetch
@echo Fetched all packages && touch $@
env: fetch spack/env
@echo This executes after the environment has been installed
clean:
rm -rf spack/ env.mk spack.lock
ifeq (,$(filter clean,$(MAKECMDGOALS)))
include env.mk
endif
```