Spack's `system` and `user` scopes provide ways for administrators and
users to set global defaults for all Spack instances, but for use cases
where one wants a clean Spack installation, these scopes can be undesirable.
For example, users may want to opt out of global system configuration, or
they may want to ignore their own home directory settings when running in
a continuous integration environment.
Spack also, by default, keeps various caches and user data in `~/.spack`,
but users may want to override these locations.
Spack provides three environment variables that allow you to override or
opt out of configuration locations:
* `SPACK_USER_CONFIG_PATH`: Override the path to use for the
`user` (`~/.spack`) scope.
* `SPACK_SYSTEM_CONFIG_PATH`: Override the path to use for the
`system` (`/etc/spack`) scope.
* `SPACK_DISABLE_LOCAL_CONFIG`: set this environment variable to completely
disable *both* the system and user configuration directories. Spack will
only consider its own defaults and `site` configuration locations.
And one that allows you to move the default cache location:
* `SPACK_USER_CACHE_PATH`: Override the default path to use for user data
(misc_cache, tests, reports, etc.)
With these settings, if you want to isolate Spack in a CI environment, you can do this:
export SPACK_DISABLE_LOCAL_CONFIG=true
export SPACK_USER_CACHE_PATH=/tmp/spack
This is a stop-gap approach until we have figured out how to deal with
the system and user config scopes more generally, as there are plans to
potentially / eventually get rid of them.
**User config**
Spack is a bit of a pain when you have:
- a shared $HOME folder across different systems.
- multiple Spack versions on the same system.
**System config**
- On shared systems with a versioned programming environment / toolkit,
system administrators want to provide config for each version (e.g.
21.09, 21.10) of the programming environment, and the user Spack
instance should be able to pick this up without a steep learning
curve.
- On shared systems the user should be able to opt out of the
hard-coded config scope in /etc/spack, since it may be incompatible
with their particular instance. Currently Spack can only opt out of all
config scopes through overrides with `"config:":`, `"packages:":`, but that
also drops the defaults config, which would have to be repeated, which
is undesirable, especially the lengthy packages.yaml.
An example use case is: having config in this folder:
```
/path/to/programming/environment/{version}/{compilers,packages}.yaml
```
and have `module load spack-system-config` set the variable
```
SPACK_SYSTEM_CONFIG_PATH=/path/to/programming/environment/{version}
```
where the user no longer has to worry about what `{version}` they are
on.
**Continuous integration**
Finally, there is the use case of continuous integration, which may
clone an arbitrary Spack version, which optimally should not pick up
system or user config from the previous run (like may happen in
classical bare metal non-containerized filesystem side effect ridden
jenkins pipelines). In fact this is very similar to how spack itself
tries to avoid picking up system dependencies during builds...
**But environments solve this?**
- You could do `include`s in environment files to get similar behavior
to the spack_system_config_path example, but environments require you
to:
1) require paths to individual config files, not directories.
2) fail if the listed config file does not exist
- They allow you to override config scopes, but this is generally too
rigurous, as it requires you to repeat the default config, in
particular packages.yaml, and just defies the point of layered config.
Co-authored-by: Tom Scogland <tscogland@llnl.gov>
Co-authored-by: Tim Fuller <tjfulle@sandia.gov>
Co-authored-by: Steve Leak <sleak@lbl.gov>
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
Any spec satisfying a default will be symlinked to `default`
If multiple specs have modulefiles in the same directory and satisfy
configured module defaults, then whichever was written last will be
default.
Use of `-R` flag to CTest command causes "empty-14" test to run,
by matching "empty", before the empty-14 target is built.
Patch CTest command in buildscript to match name exactly.
* [geant4] depends_on vecgeom@1.1.8:1.1 range
While previous versions were unclear, the [geant4.10.7 release notes](https://geant4-data.web.cern.ch/ReleaseNotes/ReleaseNotes4.10.7.html) indicate that vecgeom@1.1.8 is a minimum required version, not an exact required version ("Set VecGeom-1.1.8 as minimum required version for optional build with VecGeom."). This will allow some more freedom on the concretizer solutions while allowing geant4 to take advantage of bugfixes and improvements in vecgeom.
* [vecgeom] new version 1.1.17
* For py-torch: Also update dependencies: many version constraints
with an upper bound of @1.9 are now open (e.g. `@1.8.0:1.9` is
converted to `@1.8.0:`).
* For py-torchvision: Also add 0.11.0 and update ^pil constraint
to avoid building with 8.3.0
This PR permits to specify the `url` and `ref` of the Spack instance used in a container recipe simply by expanding the YAML schema as outlined in #20442:
```yaml
container:
images:
os: amazonlinux:2
spack:
ref: develop
resolve_sha: true
```
The `resolve_sha` option, if true, verifies the `ref` by cloning the Spack repository in a temporary directory and transforming any tag or branch name to a commit sha. When this new ability is leveraged an additional "bootstrap" stage is added, which builds an image with Spack setup and ready to install software. The Spack repository to be used can be customized with the `url` keyword under `spack`.
Modifications:
- [x] Permit to pin the version of Spack, either by branch or tag or sha
- [x] Added a few new OSes (centos:8, amazonlinux:2, ubuntu:20.04, alpine:3, cuda:11.2.1)
- [x] Permit to print the bootstrap image as a standalone
- [x] Add documentation on the new part of the schema
- [x] Add unit tests for different use cases
* [pkg][new version] Provide eospac@6.5.0 and mark it as default.
* Merge in changes found in #21629
* Mark all alpha/beta versions as deprecated.
- Addresses @sethrj's recommendation
- Also add a note indicated why these versions are marked this way.
1. Currently it prints not just the spec name, but the dependencies +
their variants + their compilers + their architectures + ...
2. It's clear from the context what spec the message applies to, so,
let's not print the spec at all.
These three rules in `concretize.lp` are overly complex:
```prolog
:- not provider(Package, Virtual),
provides_virtual(Package, Virtual),
virtual_node(Virtual).
```
```prolog
:- provides_virtual(Package, V1), provides_virtual(Package, V2), V1 != V2,
provider(Package, V1), not provider(Package, V2),
virtual_node(V1), virtual_node(V2).
```
```prolog
provider(Package, Virtual) :- root(Package), provides_virtual(Package, Virtual).
```
and they can be simplified to just:
```prolog
provider(Package, Virtual) :- node(Package), provides_virtual(Package, Virtual).
```
- [x] simplify virtual rules to just one implication
- [x] rename `provides_virtual` to `virtual_condition_holds`
fixes#26866
This semantics fits with the way Spack currently treats providers of
virtual dependencies. It needs to be revisited when #15569 is reworked
with a new syntax.
* gcc: support runtime ability to not install spack rpaths
Fixes#26582 .
* gcc: Fix malformed specs file and add docs
The updated docs point out that the spack-modified GCC does *not*
follow the usual behavior of LD_RUN_PATH!
* gcc: fix bad rpath on macOS
This bug has been around since the beginning of the GCC package file:
the rpath command it generates for macOS writes a single (invalid)
rpath entry.
* gcc: only write rpaths for directories with shared libraries
The original lib64+lib was just a hack for "in case either has one" but
it's easy to tell whether either has libraries that can be directly
referenced.