210 lines
5.7 KiB
C
210 lines
5.7 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright held by original author
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
Application
|
|
applyBoundaryLayer
|
|
|
|
Description
|
|
Apply a simplified boundary-layer model to the velocity and
|
|
turbulence fields based on the 1/7th power-law.
|
|
|
|
The uniform boundary-layer thickness is either provided via the -ybl option
|
|
or calculated as the average of the distance to the wall scaled with
|
|
the thickness coefficient supplied via the option -Cbl. If both options
|
|
are provided -ybl is used.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "wallDist.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::validOptions.insert("ybl", "scalar");
|
|
argList::validOptions.insert("Cbl", "scalar");
|
|
argList::validOptions.insert("writenut", "");
|
|
|
|
# include "setRootCase.H"
|
|
|
|
# include "createTime.H"
|
|
# include "createMesh.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
Info<< "Reading field U\n" << endl;
|
|
volVectorField U
|
|
(
|
|
IOobject
|
|
(
|
|
"U",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
mesh
|
|
);
|
|
|
|
# include "createPhi.H"
|
|
|
|
Info<< "Calculating wall distance field" << endl;
|
|
volScalarField y = wallDist(mesh).y();
|
|
|
|
// Set the mean boundary-layer thickness
|
|
dimensionedScalar ybl("ybl", dimLength, 0);
|
|
|
|
if (args.optionFound("ybl"))
|
|
{
|
|
// If the boundary-layer thickness is provided use it
|
|
ybl.value() = args.optionRead<scalar>("ybl");
|
|
}
|
|
else if (args.optionFound("Cbl"))
|
|
{
|
|
// Calculate boundary layer thickness as Cbl * mean distance to wall
|
|
ybl.value() = gAverage(y) * args.optionRead<scalar>("Cbl");
|
|
}
|
|
else
|
|
{
|
|
FatalErrorIn(args.executable())
|
|
<< "Neither option 'ybl' or 'Cbl' have been provided to calculate"
|
|
" the boundary-layer thickness"
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
Info<< "\nCreating boundary-layer for U of thickness "
|
|
<< ybl.value() << " m" << nl << endl;
|
|
|
|
// Modify velocity by applying a 1/7th power law boundary-layer
|
|
// u/U0 = (y/ybl)^(1/7)
|
|
// assumes U0 is the same as the current cell velocity
|
|
|
|
scalar yblv = ybl.value();
|
|
forAll(U, celli)
|
|
{
|
|
if (y[celli] <= yblv)
|
|
{
|
|
U[celli] *= ::pow(y[celli]/yblv, (1.0/7.0));
|
|
}
|
|
}
|
|
|
|
Info<< "Writing U" << endl;
|
|
U.write();
|
|
|
|
// Update/re-write phi
|
|
phi = fvc::interpolate(U) & mesh.Sf();
|
|
phi.write();
|
|
|
|
// Set turbulence constants
|
|
dimensionedScalar kappa("kappa", dimless, 0.41);
|
|
dimensionedScalar Cmu("Cmu", dimless, 0.09);
|
|
|
|
// Read and modify turbulence fields if present
|
|
|
|
IOobject epsilonHeader
|
|
(
|
|
"epsilon",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ
|
|
);
|
|
|
|
IOobject kHeader
|
|
(
|
|
"k",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ
|
|
);
|
|
|
|
IOobject nuTildaHeader
|
|
(
|
|
"nuTilda",
|
|
runTime.timeName(),
|
|
mesh,
|
|
IOobject::MUST_READ
|
|
);
|
|
|
|
// First calculate nut
|
|
volScalarField nut
|
|
(
|
|
"nut",
|
|
sqr(kappa*min(y, ybl))*::sqrt(2)*mag(dev(symm(fvc::grad(U))))
|
|
);
|
|
|
|
if (args.optionFound("writenut"))
|
|
{
|
|
Info<< "Writing nut" << endl;
|
|
nut.write();
|
|
}
|
|
|
|
|
|
// Read and modify turbulence fields if present
|
|
|
|
if (nuTildaHeader.headerOk())
|
|
{
|
|
Info<< "Reading field nuTilda\n" << endl;
|
|
volScalarField nuTilda(nuTildaHeader, mesh);
|
|
nuTilda = nut;
|
|
nuTilda.correctBoundaryConditions();
|
|
|
|
Info<< "Writing nuTilda\n" << endl;
|
|
nuTilda.write();
|
|
}
|
|
|
|
if (kHeader.headerOk() && epsilonHeader.headerOk())
|
|
{
|
|
Info<< "Reading field k\n" << endl;
|
|
volScalarField k(kHeader, mesh);
|
|
|
|
Info<< "Reading field epsilon\n" << endl;
|
|
volScalarField epsilon(epsilonHeader, mesh);
|
|
|
|
scalar ck0 = ::pow(Cmu.value(), 0.25)*kappa.value();
|
|
k = sqr(nut/(ck0*min(y, ybl)));
|
|
k.correctBoundaryConditions();
|
|
|
|
scalar ce0 = ::pow(Cmu.value(), 0.75)/kappa.value();
|
|
epsilon = ce0*k*sqrt(k)/min(y, ybl);
|
|
epsilon.correctBoundaryConditions();
|
|
|
|
Info<< "Writing k\n" << endl;
|
|
k.write();
|
|
|
|
Info<< "Writing epsilon\n" << endl;
|
|
epsilon.write();
|
|
}
|
|
|
|
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|