639 lines
16 KiB
C++
639 lines
16 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | foam-extend: Open Source CFD
|
|
\\ / O peration | Version: 4.0
|
|
\\ / A nd | Web: http://www.foam-extend.org
|
|
\\/ M anipulation | For copyright notice see file Copyright
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of foam-extend.
|
|
|
|
foam-extend is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
foam-extend is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Description
|
|
Writes out the FOAM mesh in pro-STAR (v4) bnd/cel/vrt format.
|
|
|
|
Alternatively, extracts the surface of the FOAM mesh into
|
|
pro-STAR (v4) .cel/.vrt/ format.
|
|
This can be useful, for example, for surface morphing in an external
|
|
package.
|
|
|
|
The cellTableId and cellTable information are used (if available).
|
|
Otherwise the cellZones are used (if available).
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "foamTime.H"
|
|
#include "volFields.H"
|
|
#include "cellModeller.H"
|
|
#include "SortableList.H"
|
|
#include "OFstream.H"
|
|
|
|
using namespace Foam;
|
|
|
|
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
|
|
|
// Cell shape models
|
|
static const cellModel* unknownPtr_ = cellModeller::lookup("unknown");
|
|
static const cellModel* tetPtr_ = cellModeller::lookup("tet");
|
|
static const cellModel* pyrPtr_ = cellModeller::lookup("pyr");
|
|
static const cellModel* prismPtr_ = cellModeller::lookup("prism");
|
|
static const cellModel* hexPtr_ = cellModeller::lookup("hex");
|
|
|
|
// face addressing from foam faces -> pro-STAR faces for primitive shapes
|
|
static const label foamToStarFaceAddressing[4][6] =
|
|
{
|
|
{ 4, 5, 2, 3, 0, 1 }, // 11 = hex
|
|
{ 0, 1, 4, 5, 2, -1 }, // 12 = prism
|
|
{ 5, 4, 2, 0, -1, -1 }, // 13 = tetra
|
|
{ 0, 4, 3, 5, 2, -1 } // 14 = pyramid
|
|
};
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
// use file globals until we make a class
|
|
static labelList cellTableId_;
|
|
|
|
// a very stripped-down cell table
|
|
// - map the cell type id -> material type id (1 = fluid, 2 = solid)
|
|
static Map<label> cellTableMap_;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
// Prostar 4+ header format
|
|
void prostarHeader(Ostream &os, const char * filetype)
|
|
{
|
|
os << "PROSTAR_" << filetype << endl
|
|
<< 4000 << " "
|
|
<< 0 << " "
|
|
<< 0 << " "
|
|
<< 0 << " "
|
|
<< 0 << " "
|
|
<< 0 << " "
|
|
<< 0 << " "
|
|
<< 0 << endl;
|
|
}
|
|
|
|
void getCellTable(const fvMesh & mesh)
|
|
{
|
|
cellTableMap_.clear();
|
|
cellTableId_.setSize(mesh.nCells(), 1);
|
|
|
|
IOdictionary cellTableDict
|
|
(
|
|
IOobject
|
|
(
|
|
"cellTable",
|
|
"constant",
|
|
mesh,
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
)
|
|
);
|
|
|
|
volScalarField volField
|
|
(
|
|
IOobject
|
|
(
|
|
"cellTableId",
|
|
mesh.time().timeName(),
|
|
mesh,
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
),
|
|
mesh,
|
|
dimensionedScalar("cellTableId", dimless, 1.0)
|
|
);
|
|
|
|
// get cellTableId information from the volScalarField if possible
|
|
if (volField.headerOk())
|
|
{
|
|
const scalarField & field = volField.internalField();
|
|
|
|
forAll(field, cellI)
|
|
{
|
|
cellTableId_[cellI] = static_cast<int>(field[cellI]);
|
|
}
|
|
|
|
if (cellTableDict.headerOk())
|
|
{
|
|
// convert dictionary to map
|
|
wordList toc = cellTableDict.toc();
|
|
|
|
forAll(toc, i)
|
|
{
|
|
word keyword = toc[i];
|
|
if (!cellTableDict.isDict(keyword)) continue;
|
|
|
|
const dictionary & dict = cellTableDict.subDict(keyword);
|
|
|
|
if (dict.found("Id") && dict.found("MaterialType"))
|
|
{
|
|
label Id;
|
|
dict["Id"] >> Id;
|
|
dict["MaterialType"] >> keyword;
|
|
|
|
if (keyword == "fluid")
|
|
{
|
|
cellTableMap_.insert(Id, 1);
|
|
}
|
|
else if (keyword == "solid")
|
|
{
|
|
cellTableMap_.insert(Id, 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Info<< "No cellTable information available" << endl;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Info<< "No cellTableId information available - using cellZones (if available)" << endl;
|
|
|
|
const Map<label> & zoneMap = mesh.cellZones().zoneMap();
|
|
|
|
// start zoned cells at cell type 1
|
|
label typeOffset = 1;
|
|
|
|
// fewer zoned cells than total cells
|
|
// - leave unzoned cells as type 1 and start zoned cells at cell type 2
|
|
if (zoneMap.size() < mesh.nCells())
|
|
{
|
|
typeOffset = 2;
|
|
}
|
|
|
|
forAllConstIter(Map<label>, zoneMap, iter)
|
|
{
|
|
cellTableId_[iter.key()] = iter() + typeOffset;
|
|
}
|
|
}
|
|
}
|
|
|
|
void writePoints
|
|
(
|
|
const polyMesh& mesh,
|
|
const fileName& timeName,
|
|
const scalar scaleFactor
|
|
)
|
|
{
|
|
fileName name(mesh.time().path()/"meshExport_" + timeName + ".vrt");
|
|
|
|
OFstream outputFile(name);
|
|
prostarHeader(outputFile, "VERTEX");
|
|
|
|
// Set the precision of the points data to 10
|
|
outputFile.precision(10);
|
|
|
|
// force decimal point for Fortran input
|
|
outputFile.setf(std::ios::showpoint);
|
|
|
|
const pointField& points = mesh.points();
|
|
|
|
Info<< "Writing " << name << " : "
|
|
<< points.size() << " points" << endl;
|
|
|
|
forAll(points, ptI)
|
|
{
|
|
// convert [m] -> [mm]
|
|
outputFile
|
|
<< ptI + 1 << " "
|
|
<< scaleFactor * points[ptI].x() << " "
|
|
<< scaleFactor * points[ptI].y() << " "
|
|
<< scaleFactor * points[ptI].z() << endl;
|
|
}
|
|
}
|
|
|
|
void writeCells(const polyMesh& mesh, const fileName& timeName)
|
|
{
|
|
fileName name(mesh.time().path()/"meshExport_" + timeName + ".cel");
|
|
|
|
OFstream outputFile(name);
|
|
prostarHeader(outputFile, "CELL");
|
|
|
|
// this is what we seem to need
|
|
// map foam cellModeller index -> star shape
|
|
Map<label> shapeLookupIndex;
|
|
shapeLookupIndex.insert(hexPtr_->index(), 11);
|
|
shapeLookupIndex.insert(prismPtr_->index(), 12);
|
|
shapeLookupIndex.insert(tetPtr_->index(), 13);
|
|
shapeLookupIndex.insert(pyrPtr_->index(), 14);
|
|
|
|
const cellShapeList& shapes = mesh.cellShapes();
|
|
const cellList & cells = mesh.cells();
|
|
const faceList & faces = mesh.faces();
|
|
const labelList & owner = mesh.faceOwner();
|
|
|
|
Info<< "Writing " << name << " : "
|
|
<< cells.size() << " cells" << endl;
|
|
|
|
forAll(cells, cellId)
|
|
{
|
|
label tableId = cellTableId_[cellId];
|
|
label materialType = 1; // 1(fluid)
|
|
if (cellTableMap_.found(tableId))
|
|
{
|
|
materialType = cellTableMap_[tableId];
|
|
}
|
|
|
|
const cellShape & shape = shapes[cellId];
|
|
label mapIndex = shape.model().index();
|
|
|
|
// a registered primitive type
|
|
if (shapeLookupIndex.found(mapIndex))
|
|
{
|
|
label shapeId = shapeLookupIndex[mapIndex];
|
|
const labelList & vrtList = shapes[cellId];
|
|
|
|
outputFile
|
|
<< cellId + 1 << " "
|
|
<< shapeId << " "
|
|
<< vrtList.size() << " "
|
|
<< tableId << " "
|
|
<< materialType;
|
|
|
|
// primitives have <= 8 vertices, but prevent overrun anyhow
|
|
label count = 0;
|
|
forAll(vrtList, i)
|
|
{
|
|
if ((count % 8) == 0)
|
|
{
|
|
outputFile << endl;
|
|
outputFile << cellId + 1;
|
|
}
|
|
outputFile << " " << vrtList[i] + 1;
|
|
count++;
|
|
}
|
|
outputFile << endl;
|
|
|
|
}
|
|
else
|
|
{
|
|
label shapeId = 255; // treat as general polyhedral
|
|
const labelList & cFaces = cells[cellId];
|
|
|
|
// create (beg,end) indices
|
|
List<label> indices(cFaces.size() + 1);
|
|
indices[0] = indices.size();
|
|
|
|
label count = indices.size();
|
|
// determine the total number of vertices
|
|
forAll(cFaces, faceI)
|
|
{
|
|
count += faces[cFaces[faceI]].size();
|
|
indices[faceI+1] = count;
|
|
}
|
|
|
|
outputFile
|
|
<< cellId + 1 << " "
|
|
<< shapeId << " "
|
|
<< count << " "
|
|
<< tableId << " "
|
|
<< materialType;
|
|
|
|
// write indices - max 8 per line
|
|
count = 0;
|
|
forAll(indices, i)
|
|
{
|
|
if ((count % 8) == 0)
|
|
{
|
|
outputFile << endl;
|
|
outputFile << cellId + 1;
|
|
}
|
|
outputFile << " " << indices[i];
|
|
count++;
|
|
}
|
|
|
|
// write faces - max 8 per line
|
|
forAll(cFaces, faceI)
|
|
{
|
|
label meshFace = cFaces[faceI];
|
|
face f;
|
|
|
|
if (owner[meshFace] == cellId)
|
|
{
|
|
f = faces[meshFace];
|
|
}
|
|
else
|
|
{
|
|
f = faces[meshFace].reverseFace();
|
|
}
|
|
|
|
forAll(f, i)
|
|
{
|
|
if ((count % 8) == 0)
|
|
{
|
|
outputFile << endl;
|
|
outputFile << cellId + 1;
|
|
}
|
|
|
|
outputFile << " " << f[i] + 1;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
outputFile << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
void writeBoundary(const polyMesh& mesh, const fileName& timeName)
|
|
{
|
|
fileName name(mesh.time().path()/"meshExport_" + timeName + ".bnd");
|
|
|
|
OFstream outputFile(name);
|
|
prostarHeader(outputFile, "BOUNDARY");
|
|
|
|
const cellShapeList& shapes = mesh.cellShapes();
|
|
const cellList & cells = mesh.cells();
|
|
const faceList & faces = mesh.faces();
|
|
const labelList & owner = mesh.faceOwner();
|
|
const polyBoundaryMesh & patches = mesh.boundaryMesh();
|
|
|
|
// this is what we seem to need
|
|
// these MUST correspond to foamToStarFaceAddressing
|
|
//
|
|
Map<label> faceLookupIndex;
|
|
faceLookupIndex.insert(hexPtr_->index(), 0);
|
|
faceLookupIndex.insert(prismPtr_->index(), 1);
|
|
faceLookupIndex.insert(tetPtr_->index(), 2);
|
|
faceLookupIndex.insert(pyrPtr_->index(), 3);
|
|
|
|
Info<< "Writing " << name << " : "
|
|
<< (mesh.nFaces() - patches[0].start()) << " boundaries" << endl;
|
|
|
|
label boundId = 0;
|
|
// Write boundary faces
|
|
//
|
|
forAll(patches, patchI)
|
|
{
|
|
label patchStart = patches[patchI].start();
|
|
label patchSize = patches[patchI].size();
|
|
|
|
for
|
|
(
|
|
label faceI = patchStart;
|
|
faceI < (patchStart + patchSize);
|
|
++faceI
|
|
)
|
|
{
|
|
label cellId = owner[faceI];
|
|
const labelList & cFaces = cells[cellId];
|
|
const cellShape & shape = shapes[cellId];
|
|
label cellFaceId = findIndex(cFaces, faceI);
|
|
|
|
// Info<< "cell " << cellId + 1 << " face " << faceI
|
|
// << " == " << faces[faceI]
|
|
// << " is index " << cellFaceId << " from " << cFaces;
|
|
|
|
// Unfortunately, the order of faces returned by
|
|
// primitiveMesh::cells() is not necessarily the same
|
|
// as defined by primitiveMesh::cellShapes()
|
|
// Thus, for registered primitive types, do the lookup ourselves.
|
|
// Finally, the cellModel face number is re-mapped to the
|
|
// Star-CD local face number
|
|
|
|
label mapIndex = shape.model().index();
|
|
|
|
// a registered primitive type
|
|
if (faceLookupIndex.found(mapIndex))
|
|
{
|
|
const faceList sFaces = shape.faces();
|
|
forAll(sFaces, sFaceI)
|
|
{
|
|
if (faces[faceI] == sFaces[sFaceI])
|
|
{
|
|
cellFaceId = sFaceI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mapIndex = faceLookupIndex[mapIndex];
|
|
cellFaceId = foamToStarFaceAddressing[mapIndex][cellFaceId];
|
|
}
|
|
// Info<< endl;
|
|
|
|
boundId++;
|
|
|
|
outputFile
|
|
<< boundId << " "
|
|
<< cellId + 1 << " "
|
|
<< cellFaceId + 1 << " "
|
|
<< patchI + 1 << " "
|
|
<< 0 << " "
|
|
<< "PATCH" << endl;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
void writeVolumeMesh
|
|
(
|
|
const fvMesh& mesh,
|
|
const fileName& timeName,
|
|
const scalar scaleFactor
|
|
)
|
|
{
|
|
getCellTable(mesh);
|
|
writePoints(mesh, timeName, scaleFactor);
|
|
writeCells(mesh, timeName);
|
|
writeBoundary(mesh, timeName);
|
|
}
|
|
|
|
void writeSurfaceMesh
|
|
(
|
|
const fvMesh& mesh,
|
|
const fileName& timeName,
|
|
const scalar scaleFactor
|
|
)
|
|
{
|
|
getCellTable(mesh);
|
|
|
|
word prefix("surfaceExport_" + timeName);
|
|
fileName name(mesh.time().path()/prefix + ".cel");
|
|
|
|
Info << "Writing " << name << endl;
|
|
|
|
OFstream celFile(name);
|
|
prostarHeader(celFile, "CELL");
|
|
|
|
// mesh and patch info
|
|
const pointField & points = mesh.points();
|
|
const labelList & owner = mesh.faceOwner();
|
|
const faceList & meshFaces = mesh.faces();
|
|
const polyBoundaryMesh & patches = mesh.boundaryMesh();
|
|
|
|
label shapeId = 3; // shell/baffle element
|
|
label typeId = 4; // 4(shell)
|
|
|
|
// remember which points need to be written
|
|
labelHashSet pointHash;
|
|
|
|
// Write boundary faces as normal Star-CD mesh
|
|
// use the face Id as the cell Id,
|
|
// use the cell table id of the face owner - allows separation of parts
|
|
forAll(patches, patchI)
|
|
{
|
|
label patchStart = patches[patchI].start();
|
|
label patchSize = patches[patchI].size();
|
|
|
|
// use face id as cell id
|
|
for
|
|
(
|
|
label faceI = patchStart;
|
|
faceI < (patchStart + patchSize);
|
|
++faceI
|
|
)
|
|
{
|
|
const labelList & vrtList = meshFaces[faceI];
|
|
label cellId = faceI;
|
|
|
|
celFile
|
|
<< cellId + 1 << " "
|
|
<< shapeId << " "
|
|
<< vrtList.size() << " "
|
|
<< cellTableId_[owner[faceI]] << " "
|
|
<< typeId;
|
|
|
|
// likely <= 8 vertices, but prevent overrun anyhow
|
|
label count = 0;
|
|
forAll(vrtList, i)
|
|
{
|
|
if ((count % 8) == 0)
|
|
{
|
|
celFile << endl;
|
|
celFile << cellId + 1;
|
|
}
|
|
// remember which points we'll need to write
|
|
pointHash.insert(vrtList[i]);
|
|
celFile << " " << vrtList[i] + 1;
|
|
count++;
|
|
}
|
|
celFile << endl;
|
|
}
|
|
}
|
|
|
|
name = (mesh.time().path()/prefix + ".vrt");
|
|
|
|
Info << "Writing " << name << endl;
|
|
OFstream vrtFile(name);
|
|
prostarHeader(vrtFile, "VERTEX");
|
|
|
|
vrtFile.precision(10);
|
|
vrtFile.setf(std::ios::showpoint); // force decimal point for Fortran
|
|
|
|
// build sorted table of contents
|
|
SortableList<label> toc(pointHash.size());
|
|
{
|
|
label i = 0;
|
|
forAllConstIter(labelHashSet, pointHash, iter)
|
|
{
|
|
toc[i++] = iter.key();
|
|
}
|
|
}
|
|
toc.sort();
|
|
pointHash.clear();
|
|
|
|
// write points in sorted order
|
|
forAll(toc, i)
|
|
{
|
|
label vrtId = toc[i];
|
|
vrtFile
|
|
<< vrtId + 1 << " "
|
|
<< scaleFactor * points[vrtId].x() << " "
|
|
<< scaleFactor * points[vrtId].y() << " "
|
|
<< scaleFactor * points[vrtId].z() << endl;
|
|
}
|
|
}
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
// Main program:
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::noParallel();
|
|
argList::validOptions.insert("noscale", "");
|
|
argList::validOptions.insert("surface", "");
|
|
|
|
# include "addTimeOptions.H"
|
|
# include "setRootCase.H"
|
|
# include "createTime.H"
|
|
|
|
// Get times list
|
|
instantList Times = runTime.times();
|
|
|
|
// set startTime and endTime depending on -time and -latestTime options
|
|
# include "checkTimeOptions.H"
|
|
|
|
runTime.setTime(Times[startTime], startTime);
|
|
|
|
// rescale from [m] to [mm] by default
|
|
scalar scaleFactor = 1000.0;
|
|
|
|
if (args.options().found("noscale"))
|
|
{
|
|
scaleFactor = 1.0;
|
|
}
|
|
|
|
bool surfaceOnly = false;
|
|
|
|
if (args.options().found("surface"))
|
|
{
|
|
surfaceOnly = true;
|
|
}
|
|
|
|
# include "createMesh.H"
|
|
|
|
bool firstCheck = true;
|
|
|
|
for (label i=startTime; i<endTime; i++)
|
|
{
|
|
runTime.setTime(Times[i], i);
|
|
|
|
Info<< "Time = " << runTime.timeName() << endl;
|
|
|
|
polyMesh::readUpdateState state = mesh.readUpdate();
|
|
|
|
if (firstCheck || state != polyMesh::UNCHANGED)
|
|
{
|
|
if (surfaceOnly)
|
|
{
|
|
writeSurfaceMesh(mesh, runTime.timeName(), scaleFactor);
|
|
}
|
|
else
|
|
{
|
|
writeVolumeMesh(mesh, runTime.timeName(), scaleFactor);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Info << "No mesh." << endl;
|
|
}
|
|
|
|
firstCheck = false;
|
|
|
|
Info << endl << endl;
|
|
}
|
|
|
|
Info << "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// ************************************************************************* //
|