This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/mesh/conversion/star4ToFoam/foamMeshToStar/foamMeshToStar.C
2016-06-21 15:04:12 +02:00

639 lines
16 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Description
Writes out the FOAM mesh in pro-STAR (v4) bnd/cel/vrt format.
Alternatively, extracts the surface of the FOAM mesh into
pro-STAR (v4) .cel/.vrt/ format.
This can be useful, for example, for surface morphing in an external
package.
The cellTableId and cellTable information are used (if available).
Otherwise the cellZones are used (if available).
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "foamTime.H"
#include "volFields.H"
#include "cellModeller.H"
#include "SortableList.H"
#include "OFstream.H"
using namespace Foam;
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
// Cell shape models
static const cellModel* unknownPtr_ = cellModeller::lookup("unknown");
static const cellModel* tetPtr_ = cellModeller::lookup("tet");
static const cellModel* pyrPtr_ = cellModeller::lookup("pyr");
static const cellModel* prismPtr_ = cellModeller::lookup("prism");
static const cellModel* hexPtr_ = cellModeller::lookup("hex");
// face addressing from foam faces -> pro-STAR faces for primitive shapes
static const label foamToStarFaceAddressing[4][6] =
{
{ 4, 5, 2, 3, 0, 1 }, // 11 = hex
{ 0, 1, 4, 5, 2, -1 }, // 12 = prism
{ 5, 4, 2, 0, -1, -1 }, // 13 = tetra
{ 0, 4, 3, 5, 2, -1 } // 14 = pyramid
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// use file globals until we make a class
static labelList cellTableId_;
// a very stripped-down cell table
// - map the cell type id -> material type id (1 = fluid, 2 = solid)
static Map<label> cellTableMap_;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Prostar 4+ header format
void prostarHeader(Ostream &os, const char * filetype)
{
os << "PROSTAR_" << filetype << endl
<< 4000 << " "
<< 0 << " "
<< 0 << " "
<< 0 << " "
<< 0 << " "
<< 0 << " "
<< 0 << " "
<< 0 << endl;
}
void getCellTable(const fvMesh & mesh)
{
cellTableMap_.clear();
cellTableId_.setSize(mesh.nCells(), 1);
IOdictionary cellTableDict
(
IOobject
(
"cellTable",
"constant",
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
)
);
volScalarField volField
(
IOobject
(
"cellTableId",
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar("cellTableId", dimless, 1.0)
);
// get cellTableId information from the volScalarField if possible
if (volField.headerOk())
{
const scalarField & field = volField.internalField();
forAll(field, cellI)
{
cellTableId_[cellI] = static_cast<int>(field[cellI]);
}
if (cellTableDict.headerOk())
{
// convert dictionary to map
wordList toc = cellTableDict.toc();
forAll(toc, i)
{
word keyword = toc[i];
if (!cellTableDict.isDict(keyword)) continue;
const dictionary & dict = cellTableDict.subDict(keyword);
if (dict.found("Id") && dict.found("MaterialType"))
{
label Id;
dict["Id"] >> Id;
dict["MaterialType"] >> keyword;
if (keyword == "fluid")
{
cellTableMap_.insert(Id, 1);
}
else if (keyword == "solid")
{
cellTableMap_.insert(Id, 2);
}
}
}
}
else
{
Info<< "No cellTable information available" << endl;
}
}
else
{
Info<< "No cellTableId information available - using cellZones (if available)" << endl;
const Map<label> & zoneMap = mesh.cellZones().zoneMap();
// start zoned cells at cell type 1
label typeOffset = 1;
// fewer zoned cells than total cells
// - leave unzoned cells as type 1 and start zoned cells at cell type 2
if (zoneMap.size() < mesh.nCells())
{
typeOffset = 2;
}
forAllConstIter(Map<label>, zoneMap, iter)
{
cellTableId_[iter.key()] = iter() + typeOffset;
}
}
}
void writePoints
(
const polyMesh& mesh,
const fileName& timeName,
const scalar scaleFactor
)
{
fileName name(mesh.time().path()/"meshExport_" + timeName + ".vrt");
OFstream outputFile(name);
prostarHeader(outputFile, "VERTEX");
// Set the precision of the points data to 10
outputFile.precision(10);
// force decimal point for Fortran input
outputFile.setf(std::ios::showpoint);
const pointField& points = mesh.points();
Info<< "Writing " << name << " : "
<< points.size() << " points" << endl;
forAll(points, ptI)
{
// convert [m] -> [mm]
outputFile
<< ptI + 1 << " "
<< scaleFactor * points[ptI].x() << " "
<< scaleFactor * points[ptI].y() << " "
<< scaleFactor * points[ptI].z() << endl;
}
}
void writeCells(const polyMesh& mesh, const fileName& timeName)
{
fileName name(mesh.time().path()/"meshExport_" + timeName + ".cel");
OFstream outputFile(name);
prostarHeader(outputFile, "CELL");
// this is what we seem to need
// map foam cellModeller index -> star shape
Map<label> shapeLookupIndex;
shapeLookupIndex.insert(hexPtr_->index(), 11);
shapeLookupIndex.insert(prismPtr_->index(), 12);
shapeLookupIndex.insert(tetPtr_->index(), 13);
shapeLookupIndex.insert(pyrPtr_->index(), 14);
const cellShapeList& shapes = mesh.cellShapes();
const cellList & cells = mesh.cells();
const faceList & faces = mesh.faces();
const labelList & owner = mesh.faceOwner();
Info<< "Writing " << name << " : "
<< cells.size() << " cells" << endl;
forAll(cells, cellId)
{
label tableId = cellTableId_[cellId];
label materialType = 1; // 1(fluid)
if (cellTableMap_.found(tableId))
{
materialType = cellTableMap_[tableId];
}
const cellShape & shape = shapes[cellId];
label mapIndex = shape.model().index();
// a registered primitive type
if (shapeLookupIndex.found(mapIndex))
{
label shapeId = shapeLookupIndex[mapIndex];
const labelList & vrtList = shapes[cellId];
outputFile
<< cellId + 1 << " "
<< shapeId << " "
<< vrtList.size() << " "
<< tableId << " "
<< materialType;
// primitives have <= 8 vertices, but prevent overrun anyhow
label count = 0;
forAll(vrtList, i)
{
if ((count % 8) == 0)
{
outputFile << endl;
outputFile << cellId + 1;
}
outputFile << " " << vrtList[i] + 1;
count++;
}
outputFile << endl;
}
else
{
label shapeId = 255; // treat as general polyhedral
const labelList & cFaces = cells[cellId];
// create (beg,end) indices
List<label> indices(cFaces.size() + 1);
indices[0] = indices.size();
label count = indices.size();
// determine the total number of vertices
forAll(cFaces, faceI)
{
count += faces[cFaces[faceI]].size();
indices[faceI+1] = count;
}
outputFile
<< cellId + 1 << " "
<< shapeId << " "
<< count << " "
<< tableId << " "
<< materialType;
// write indices - max 8 per line
count = 0;
forAll(indices, i)
{
if ((count % 8) == 0)
{
outputFile << endl;
outputFile << cellId + 1;
}
outputFile << " " << indices[i];
count++;
}
// write faces - max 8 per line
forAll(cFaces, faceI)
{
label meshFace = cFaces[faceI];
face f;
if (owner[meshFace] == cellId)
{
f = faces[meshFace];
}
else
{
f = faces[meshFace].reverseFace();
}
forAll(f, i)
{
if ((count % 8) == 0)
{
outputFile << endl;
outputFile << cellId + 1;
}
outputFile << " " << f[i] + 1;
count++;
}
}
outputFile << endl;
}
}
}
void writeBoundary(const polyMesh& mesh, const fileName& timeName)
{
fileName name(mesh.time().path()/"meshExport_" + timeName + ".bnd");
OFstream outputFile(name);
prostarHeader(outputFile, "BOUNDARY");
const cellShapeList& shapes = mesh.cellShapes();
const cellList & cells = mesh.cells();
const faceList & faces = mesh.faces();
const labelList & owner = mesh.faceOwner();
const polyBoundaryMesh & patches = mesh.boundaryMesh();
// this is what we seem to need
// these MUST correspond to foamToStarFaceAddressing
//
Map<label> faceLookupIndex;
faceLookupIndex.insert(hexPtr_->index(), 0);
faceLookupIndex.insert(prismPtr_->index(), 1);
faceLookupIndex.insert(tetPtr_->index(), 2);
faceLookupIndex.insert(pyrPtr_->index(), 3);
Info<< "Writing " << name << " : "
<< (mesh.nFaces() - patches[0].start()) << " boundaries" << endl;
label boundId = 0;
// Write boundary faces
//
forAll(patches, patchI)
{
label patchStart = patches[patchI].start();
label patchSize = patches[patchI].size();
for
(
label faceI = patchStart;
faceI < (patchStart + patchSize);
++faceI
)
{
label cellId = owner[faceI];
const labelList & cFaces = cells[cellId];
const cellShape & shape = shapes[cellId];
label cellFaceId = findIndex(cFaces, faceI);
// Info<< "cell " << cellId + 1 << " face " << faceI
// << " == " << faces[faceI]
// << " is index " << cellFaceId << " from " << cFaces;
// Unfortunately, the order of faces returned by
// primitiveMesh::cells() is not necessarily the same
// as defined by primitiveMesh::cellShapes()
// Thus, for registered primitive types, do the lookup ourselves.
// Finally, the cellModel face number is re-mapped to the
// Star-CD local face number
label mapIndex = shape.model().index();
// a registered primitive type
if (faceLookupIndex.found(mapIndex))
{
const faceList sFaces = shape.faces();
forAll(sFaces, sFaceI)
{
if (faces[faceI] == sFaces[sFaceI])
{
cellFaceId = sFaceI;
break;
}
}
mapIndex = faceLookupIndex[mapIndex];
cellFaceId = foamToStarFaceAddressing[mapIndex][cellFaceId];
}
// Info<< endl;
boundId++;
outputFile
<< boundId << " "
<< cellId + 1 << " "
<< cellFaceId + 1 << " "
<< patchI + 1 << " "
<< 0 << " "
<< "PATCH" << endl;
}
}
}
void writeVolumeMesh
(
const fvMesh& mesh,
const fileName& timeName,
const scalar scaleFactor
)
{
getCellTable(mesh);
writePoints(mesh, timeName, scaleFactor);
writeCells(mesh, timeName);
writeBoundary(mesh, timeName);
}
void writeSurfaceMesh
(
const fvMesh& mesh,
const fileName& timeName,
const scalar scaleFactor
)
{
getCellTable(mesh);
word prefix("surfaceExport_" + timeName);
fileName name(mesh.time().path()/prefix + ".cel");
Info << "Writing " << name << endl;
OFstream celFile(name);
prostarHeader(celFile, "CELL");
// mesh and patch info
const pointField & points = mesh.points();
const labelList & owner = mesh.faceOwner();
const faceList & meshFaces = mesh.faces();
const polyBoundaryMesh & patches = mesh.boundaryMesh();
label shapeId = 3; // shell/baffle element
label typeId = 4; // 4(shell)
// remember which points need to be written
labelHashSet pointHash;
// Write boundary faces as normal Star-CD mesh
// use the face Id as the cell Id,
// use the cell table id of the face owner - allows separation of parts
forAll(patches, patchI)
{
label patchStart = patches[patchI].start();
label patchSize = patches[patchI].size();
// use face id as cell id
for
(
label faceI = patchStart;
faceI < (patchStart + patchSize);
++faceI
)
{
const labelList & vrtList = meshFaces[faceI];
label cellId = faceI;
celFile
<< cellId + 1 << " "
<< shapeId << " "
<< vrtList.size() << " "
<< cellTableId_[owner[faceI]] << " "
<< typeId;
// likely <= 8 vertices, but prevent overrun anyhow
label count = 0;
forAll(vrtList, i)
{
if ((count % 8) == 0)
{
celFile << endl;
celFile << cellId + 1;
}
// remember which points we'll need to write
pointHash.insert(vrtList[i]);
celFile << " " << vrtList[i] + 1;
count++;
}
celFile << endl;
}
}
name = (mesh.time().path()/prefix + ".vrt");
Info << "Writing " << name << endl;
OFstream vrtFile(name);
prostarHeader(vrtFile, "VERTEX");
vrtFile.precision(10);
vrtFile.setf(std::ios::showpoint); // force decimal point for Fortran
// build sorted table of contents
SortableList<label> toc(pointHash.size());
{
label i = 0;
forAllConstIter(labelHashSet, pointHash, iter)
{
toc[i++] = iter.key();
}
}
toc.sort();
pointHash.clear();
// write points in sorted order
forAll(toc, i)
{
label vrtId = toc[i];
vrtFile
<< vrtId + 1 << " "
<< scaleFactor * points[vrtId].x() << " "
<< scaleFactor * points[vrtId].y() << " "
<< scaleFactor * points[vrtId].z() << endl;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Main program:
int main(int argc, char *argv[])
{
argList::noParallel();
argList::validOptions.insert("noscale", "");
argList::validOptions.insert("surface", "");
# include "addTimeOptions.H"
# include "setRootCase.H"
# include "createTime.H"
// Get times list
instantList Times = runTime.times();
// set startTime and endTime depending on -time and -latestTime options
# include "checkTimeOptions.H"
runTime.setTime(Times[startTime], startTime);
// rescale from [m] to [mm] by default
scalar scaleFactor = 1000.0;
if (args.options().found("noscale"))
{
scaleFactor = 1.0;
}
bool surfaceOnly = false;
if (args.options().found("surface"))
{
surfaceOnly = true;
}
# include "createMesh.H"
bool firstCheck = true;
for (label i=startTime; i<endTime; i++)
{
runTime.setTime(Times[i], i);
Info<< "Time = " << runTime.timeName() << endl;
polyMesh::readUpdateState state = mesh.readUpdate();
if (firstCheck || state != polyMesh::UNCHANGED)
{
if (surfaceOnly)
{
writeSurfaceMesh(mesh, runTime.timeName(), scaleFactor);
}
else
{
writeVolumeMesh(mesh, runTime.timeName(), scaleFactor);
}
}
else
{
Info << "No mesh." << endl;
}
firstCheck = false;
Info << endl << endl;
}
Info << "End\n" << endl;
return 0;
}
// ************************************************************************* //