This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/thermophysical/adiabaticFlameT/adiabaticFlameT.C
2010-08-25 22:42:57 +01:00

193 lines
5.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
adiabaticFlameT
Description
Calculates the adiabatic flame temperature for a given fuel over a
range of unburnt temperatures and equivalence ratios.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "dictionary.H"
#include "IFstream.H"
#include "OSspecific.H"
#include "specieThermo.H"
#include "janafThermo.H"
#include "perfectGas.H"
using namespace Foam;
typedef specieThermo<janafThermo<perfectGas> > thermo;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::validArgs.clear();
argList::validArgs.append("controlFile");
argList args(argc, argv);
fileName controlFileName(args.additionalArgs()[0]);
// Construct control dictionary
IFstream controlFile(controlFileName);
// Check controlFile stream is OK
if (!controlFile.good())
{
FatalErrorIn(args.executable())
<< "Cannot read file " << controlFileName
<< exit(FatalError);
}
dictionary control(controlFile);
scalar T0(readScalar(control.lookup("T0")));
word fuelName(control.lookup("fuel"));
scalar n(readScalar(control.lookup("n")));
scalar m(readScalar(control.lookup("m")));
Info<< nl << "Reading Burcat data dictionary" << endl;
fileName BurcatCpDataFileName(findEtcFile("thermoData/BurcatCpData"));
// Construct control dictionary
IFstream BurcatCpDataFile(BurcatCpDataFileName);
// Check BurcatCpData stream is OK
if (!BurcatCpDataFile.good())
{
FatalErrorIn(args.executable())
<< "Cannot read file " << BurcatCpDataFileName
<< exit(FatalError);
}
dictionary CpData(BurcatCpDataFile);
scalar stoicO2 = n + m/4.0;
scalar stoicN2 = (0.79/0.21)*(n + m/4.0);
scalar stoicCO2 = n;
scalar stoicH2O = m/2.0;
thermo fuel
(
"fuel",
thermo(CpData.lookup(fuelName))
);
thermo oxidant
(
"oxidant",
stoicO2*thermo(CpData.lookup("O2"))
+ stoicN2*thermo(CpData.lookup("N2"))
);
dimensionedScalar stoichiometricAirFuelMassRatio
(
"stoichiometricAirFuelMassRatio",
dimless,
(oxidant.W()*oxidant.nMoles())/fuel.W()
);
Info<< "stoichiometricAirFuelMassRatio "
<< stoichiometricAirFuelMassRatio << ';' << endl;
for (int i=0; i<300; i++)
{
scalar equiv = (i + 1)*0.01;
scalar ft = 1/(1 + stoichiometricAirFuelMassRatio.value()/equiv);
Info<< "phi = " << equiv << nl
<< "ft = " << ft << endl;
scalar o2 = (1.0/equiv)*stoicO2;
scalar n2 = (0.79/0.21)*o2;
scalar fres = max(1.0 - 1.0/equiv, 0.0);
scalar ores = max(1.0/equiv - 1.0, 0.0);
scalar fburnt = 1.0 - fres;
thermo fuel
(
"fuel",
thermo(CpData.lookup(fuelName))
);
Info<< "fuel " << fuel << ';' << endl;
thermo oxidant
(
"oxidant",
o2*thermo(CpData.lookup("O2"))
+ n2*thermo(CpData.lookup("N2"))
);
Info<< "oxidant " << (1/oxidant.nMoles())*oxidant << ';' << endl;
thermo reactants
(
"reactants",
fuel + oxidant
);
Info<< "reactants " << (1/reactants.nMoles())*reactants << ';' << endl;
thermo burntProducts
(
"burntProducts",
+ (n2 - (0.79/0.21)*ores*stoicO2)*thermo(CpData.lookup("N2"))
+ fburnt*stoicCO2*thermo(CpData.lookup("CO2"))
+ fburnt*stoicH2O*thermo(CpData.lookup("H2O"))
);
Info<< "burntProducts "
<< (1/burntProducts.nMoles())*burntProducts << ';' << endl;
thermo products
(
"products",
fres*fuel
+ n2*thermo(CpData.lookup("N2"))
+ fburnt*stoicCO2*thermo(CpData.lookup("CO2"))
+ fburnt*stoicH2O*thermo(CpData.lookup("H2O"))
+ ores*stoicO2*thermo(CpData.lookup("O2"))
);
Info<< "products " << (1/products.nMoles())*products << ';' << endl;
scalar Tad = products.TH(reactants.H(T0), 1000.0);
Info<< "Tad = " << Tad << nl << endl;
}
Info<< nl << "end" << endl;
return 0;
}
// ************************************************************************* //