This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/mesh/manipulation/splitMeshRegions/splitMeshRegions.C
2018-02-07 12:02:39 +00:00

2030 lines
54 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
splitMeshRegions
Description
Splits mesh into multiple regions.
Each region is defined as a domain whose cells can all be reached by
cell-face-cell walking without crossing
- boundary faces
- additional faces from faceSet (-blockedFaces faceSet).
- any face in between differing cellZones (-cellZones)
Output is:
- volScalarField with regions as different scalars (-detectOnly) or
- mesh with multiple regions or
- mesh with cells put into cellZones (-makeCellZones)
Note:
- cellZonesOnly does not do a walk and uses the cellZones only. Use
this if you don't mind having disconnected domains in a single region.
This option requires all cells to be in one (and one only) cellZone.
- cellZonesFileOnly behaves like -cellZonesOnly but reads the cellZones
from the specified file. This allows one to explicitly specify the region
distribution and still have multiple cellZones per region.
- useCellZonesOnly does not do a walk and uses the cellZones only. Use
this if you don't mind having disconnected domains in a single region.
This option requires all cells to be in one (and one only) cellZone.
- Should work in parallel.
cellZones can differ on either side of processor boundaries in which case
the faces get moved from processor patch to directMapped patch. Not
very well tested.
- If a cell zone gets split into more than one region it can detect
the largest matching region (-sloppyCellZones). This will accept any
region that covers more than 50% of the zone. It has to be a subset
so cannot have any cells in any other zone.
- writes maps like decomposePar back to original mesh:
- pointRegionAddressing : for every point in this region the point in
the original mesh
- cellRegionAddressing : ,, cell ,, cell ,,
- faceRegionAddressing : ,, face ,, face in
the original mesh + 'turning index'. For a face in the same orientation
this is the original facelabel+1, for a turned face
this is -facelabel - 1
\*---------------------------------------------------------------------------*/
#include "SortableList.H"
#include "argList.H"
#include "regionSplit.H"
#include "fvMeshSubset.H"
#include "IOobjectList.H"
#include "volFields.H"
#include "faceSet.H"
#include "cellSet.H"
#include "directTopoChange.H"
#include "mapPolyMesh.H"
#include "removeCells.H"
#include "EdgeMap.H"
#include "syncTools.H"
#include "ReadFields.H"
#include "directMappedWallPolyPatch.H"
#include "zeroGradientFvPatchFields.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class GeoField>
void addPatchFields(fvMesh& mesh, const word& patchFieldType)
{
HashTable<const GeoField*> flds
(
mesh.objectRegistry::lookupClass<GeoField>()
);
for
(
typename HashTable<const GeoField*>::const_iterator iter =
flds.begin();
iter != flds.end();
++iter
)
{
const GeoField& fld = *iter();
typename GeoField::GeometricBoundaryField& bfld =
const_cast<typename GeoField::GeometricBoundaryField&>
(
fld.boundaryField()
);
label sz = bfld.size();
bfld.setSize(sz + 1);
bfld.set
(
sz,
GeoField::PatchFieldType::New
(
patchFieldType,
mesh.boundary()[sz],
fld.dimensionedInternalField()
)
);
}
}
// Remove last patch field
template<class GeoField>
void trimPatchFields(fvMesh& mesh, const label nPatches)
{
HashTable<const GeoField*> flds
(
mesh.objectRegistry::lookupClass<GeoField>()
);
for
(
typename HashTable<const GeoField*>::const_iterator iter =
flds.begin();
iter != flds.end();
++iter
)
{
const GeoField& fld = *iter();
const_cast<typename GeoField::GeometricBoundaryField&>
(
fld.boundaryField()
).setSize(nPatches);
}
}
// Reorder patch field
template<class GeoField>
void reorderPatchFields(fvMesh& mesh, const labelList& oldToNew)
{
HashTable<const GeoField*> flds
(
mesh.objectRegistry::lookupClass<GeoField>()
);
for
(
typename HashTable<const GeoField*>::const_iterator iter =
flds.begin();
iter != flds.end();
++iter
)
{
const GeoField& fld = *iter();
typename GeoField::GeometricBoundaryField& bfld =
const_cast<typename GeoField::GeometricBoundaryField&>
(
fld.boundaryField()
);
bfld.reorder(oldToNew);
}
}
// Adds patch if not yet there. Returns patchID.
label addPatch(fvMesh& mesh, const polyPatch& patch)
{
polyBoundaryMesh& polyPatches =
const_cast<polyBoundaryMesh&>(mesh.boundaryMesh());
label patchI = polyPatches.findPatchID(patch.name());
if (patchI != -1)
{
if (polyPatches[patchI].type() == patch.type())
{
// Already there
return patchI;
}
else
{
FatalErrorIn("addPatch(fvMesh&, const polyPatch*)")
<< "Already have patch " << patch.name()
<< " but of type " << patch.type()
<< exit(FatalError);
}
}
label insertPatchI = polyPatches.size();
label startFaceI = mesh.nFaces();
forAll (polyPatches, patchI)
{
const polyPatch& pp = polyPatches[patchI];
if (isA<processorPolyPatch>(pp))
{
insertPatchI = patchI;
startFaceI = pp.start();
break;
}
}
// Below is all quite a hack. Feel free to change once there is a better
// mechanism to insert and reorder patches.
// Clear local fields and e.g. polyMesh parallelInfo.
mesh.clearOut();
label sz = polyPatches.size();
fvBoundaryMesh& fvPatches = const_cast<fvBoundaryMesh&>(mesh.boundary());
Info<< "Inserting patch " << patch.name() << " to slot " << insertPatchI
<< " out of " << polyPatches.size() << endl;
// Add polyPatch at the end
polyPatches.setSize(sz + 1);
polyPatches.set
(
sz,
patch.clone
(
polyPatches,
insertPatchI, // index
0, // size
startFaceI // start
)
);
fvPatches.setSize(sz + 1);
fvPatches.set
(
sz,
fvPatch::New
(
polyPatches[sz], // point to newly added polyPatch
mesh.boundary()
)
);
addPatchFields<volScalarField>
(
mesh,
calculatedFvPatchField<scalar>::typeName
);
addPatchFields<volVectorField>
(
mesh,
calculatedFvPatchField<vector>::typeName
);
addPatchFields<volSphericalTensorField>
(
mesh,
calculatedFvPatchField<sphericalTensor>::typeName
);
addPatchFields<volSymmTensorField>
(
mesh,
calculatedFvPatchField<symmTensor>::typeName
);
addPatchFields<volTensorField>
(
mesh,
calculatedFvPatchField<tensor>::typeName
);
// Surface fields
addPatchFields<surfaceScalarField>
(
mesh,
calculatedFvPatchField<scalar>::typeName
);
addPatchFields<surfaceVectorField>
(
mesh,
calculatedFvPatchField<vector>::typeName
);
addPatchFields<surfaceSphericalTensorField>
(
mesh,
calculatedFvPatchField<sphericalTensor>::typeName
);
addPatchFields<surfaceSymmTensorField>
(
mesh,
calculatedFvPatchField<symmTensor>::typeName
);
addPatchFields<surfaceTensorField>
(
mesh,
calculatedFvPatchField<tensor>::typeName
);
// Create reordering list
// patches before insert position stay as is
labelList oldToNew(sz + 1);
for (label i = 0; i < insertPatchI; i++)
{
oldToNew[i] = i;
}
// patches after insert position move one up
for (label i = insertPatchI; i < sz; i++)
{
oldToNew[i] = i + 1;
}
// appended patch gets moved to insert position
oldToNew[sz] = insertPatchI;
// Shuffle into place
polyPatches.reorder(oldToNew);
fvPatches.reorder(oldToNew);
reorderPatchFields<volScalarField>(mesh, oldToNew);
reorderPatchFields<volVectorField>(mesh, oldToNew);
reorderPatchFields<volSphericalTensorField>(mesh, oldToNew);
reorderPatchFields<volSymmTensorField>(mesh, oldToNew);
reorderPatchFields<volTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceScalarField>(mesh, oldToNew);
reorderPatchFields<surfaceVectorField>(mesh, oldToNew);
reorderPatchFields<surfaceSphericalTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceSymmTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceTensorField>(mesh, oldToNew);
return insertPatchI;
}
// Reorder and delete patches. Deleted. HJ, 22/May/2011
template<class GeoField>
void subsetVolFields
(
const fvMesh& mesh,
const fvMesh& subMesh,
const labelList& cellMap,
const labelList& faceMap,
const labelList& patchMap
)
{
// Real patch map passed by argument
// HJ, 22/May/2011
HashTable<const GeoField*> fields
(
mesh.objectRegistry::lookupClass<GeoField>()
);
forAllConstIter(typename HashTable<const GeoField*>, fields, iter)
{
const GeoField& fld = *iter();
Info<< "Mapping field " << fld.name() << endl;
tmp<GeoField> tSubFld
(
fvMeshSubset::meshToMesh
(
fld,
subMesh,
patchMap,
cellMap,
faceMap
)
);
// Hack: set value to 0 for introduced patches (since don't
// get initialised.
forAll (tSubFld().boundaryField(), patchI)
{
const fvPatchField<typename GeoField::value_type>& pfld =
tSubFld().boundaryField()[patchI];
if
(
isA<calculatedFvPatchField<typename GeoField::value_type> >
(pfld)
)
{
tSubFld().boundaryField()[patchI] ==
pTraits<typename GeoField::value_type>::zero;
}
}
// Store on subMesh
GeoField* subFld = tSubFld.ptr();
subFld->rename(fld.name());
subFld->writeOpt() = IOobject::AUTO_WRITE;
subFld->store();
}
}
template<class GeoField>
void subsetSurfaceFields
(
const fvMesh& mesh,
const fvMesh& subMesh,
const labelList& faceMap,
const labelList& patchMap
)
{
// Real patch map passed by argument
// HJ, 22/May/2011
HashTable<const GeoField*> fields
(
mesh.objectRegistry::lookupClass<GeoField>()
);
forAllConstIter(typename HashTable<const GeoField*>, fields, iter)
{
const GeoField& fld = *iter();
Info<< "Mapping field " << fld.name() << endl;
tmp<GeoField> tSubFld
(
fvMeshSubset::meshToMesh
(
fld,
subMesh,
patchMap,
faceMap
)
);
// Hack: set value to 0 for introduced patches (since don't
// get initialised.
forAll (tSubFld().boundaryField(), patchI)
{
const fvsPatchField<typename GeoField::value_type>& pfld =
tSubFld().boundaryField()[patchI];
if
(
isA<calculatedFvsPatchField<typename GeoField::value_type> >
(pfld)
)
{
tSubFld().boundaryField()[patchI] ==
pTraits<typename GeoField::value_type>::zero;
}
}
// Store on subMesh
GeoField* subFld = tSubFld.ptr();
subFld->rename(fld.name());
subFld->writeOpt() = IOobject::AUTO_WRITE;
subFld->store();
}
}
// Select all cells not in the region
labelList getNonRegionCells(const labelList& cellRegion, const label regionI)
{
DynamicList<label> nonRegionCells(cellRegion.size());
forAll (cellRegion, cellI)
{
if (cellRegion[cellI] != regionI)
{
nonRegionCells.append(cellI);
}
}
return nonRegionCells.shrink();
}
// Get per region-region interface the sizes. If sumParallel sums sizes.
// Returns interfaces as straight list for looping in identical order.
void getInterfaceSizes
(
const polyMesh& mesh,
const labelList& cellRegion,
const bool sumParallel,
edgeList& interfaces,
EdgeMap<label>& interfaceSizes
)
{
// Internal faces
// ~~~~~~~~~~~~~~
forAll (mesh.faceNeighbour(), faceI)
{
label ownRegion = cellRegion[mesh.faceOwner()[faceI]];
label neiRegion = cellRegion[mesh.faceNeighbour()[faceI]];
if (ownRegion != neiRegion)
{
edge interface
(
min(ownRegion, neiRegion),
max(ownRegion, neiRegion)
);
EdgeMap<label>::iterator iter = interfaceSizes.find(interface);
if (iter != interfaceSizes.end())
{
iter()++;
}
else
{
interfaceSizes.insert(interface, 1);
}
}
}
// Boundary faces
// ~~~~~~~~~~~~~~
// Neighbour cellRegion.
labelList coupledRegion(mesh.nFaces()-mesh.nInternalFaces());
forAll (coupledRegion, i)
{
label cellI = mesh.faceOwner()[i+mesh.nInternalFaces()];
coupledRegion[i] = cellRegion[cellI];
}
syncTools::swapBoundaryFaceList(mesh, coupledRegion, false);
forAll (coupledRegion, i)
{
label faceI = i+mesh.nInternalFaces();
label ownRegion = cellRegion[mesh.faceOwner()[faceI]];
label neiRegion = coupledRegion[i];
if (ownRegion != neiRegion)
{
edge interface
(
min(ownRegion, neiRegion),
max(ownRegion, neiRegion)
);
EdgeMap<label>::iterator iter = interfaceSizes.find(interface);
if (iter != interfaceSizes.end())
{
iter()++;
}
else
{
interfaceSizes.insert(interface, 1);
}
}
}
if (sumParallel && Pstream::parRun())
{
if (Pstream::master())
{
// Receive and add to my sizes
for
(
int slave = Pstream::firstSlave();
slave <= Pstream::lastSlave();
slave++
)
{
IPstream fromSlave(Pstream::blocking, slave);
EdgeMap<label> slaveSizes(fromSlave);
forAllConstIter(EdgeMap<label>, slaveSizes, slaveIter)
{
EdgeMap<label>::iterator masterIter =
interfaceSizes.find(slaveIter.key());
if (masterIter != interfaceSizes.end())
{
masterIter() += slaveIter();
}
else
{
interfaceSizes.insert(slaveIter.key(), slaveIter());
}
}
}
// Distribute
for
(
int slave = Pstream::firstSlave();
slave <= Pstream::lastSlave();
slave++
)
{
// Receive the edges using shared points from the slave.
OPstream toSlave(Pstream::blocking, slave);
toSlave << interfaceSizes;
}
}
else
{
// Send to master
{
OPstream toMaster(Pstream::blocking, Pstream::masterNo());
toMaster << interfaceSizes;
}
// Receive from master
{
IPstream fromMaster(Pstream::blocking, Pstream::masterNo());
fromMaster >> interfaceSizes;
}
}
}
// Make sure all processors have interfaces in same order
interfaces = interfaceSizes.toc();
if (sumParallel)
{
Pstream::scatter(interfaces);
}
}
// Create mesh for region. Mesh pointer not passed in: instead, mesh is
// written out (as polyMesh) and read in (as fvMesh)
// to allow for field mapping.
// HJ, 5/Apr/2011
autoPtr<mapPolyMesh> createRegionMesh
(
const labelList& cellRegion,
const EdgeMap<label>& interfaceToPatch,
const fvMesh& mesh,
const label regionI,
const word& regionName,
const word& newMeshInstance
)
{
// Neighbour cellRegion.
labelList coupledRegion(mesh.nFaces() - mesh.nInternalFaces());
forAll (coupledRegion, i)
{
label cellI = mesh.faceOwner()[i+mesh.nInternalFaces()];
coupledRegion[i] = cellRegion[cellI];
}
syncTools::swapBoundaryFaceList(mesh, coupledRegion, false);
// Topology change container. Start off from existing mesh.
directTopoChange meshMod(mesh);
// Cell remover engine
removeCells cellRemover(mesh);
// Select all but region cells
labelList cellsToRemove(getNonRegionCells(cellRegion, regionI));
// Find out which faces will get exposed. Note that this
// gets faces in mesh face order. So both regions will get same
// face in same order (important!)
labelList exposedFaces = cellRemover.getExposedFaces(cellsToRemove);
labelList exposedPatchIDs(exposedFaces.size());
forAll (exposedFaces, i)
{
label faceI = exposedFaces[i];
label ownRegion = cellRegion[mesh.faceOwner()[faceI]];
label neiRegion = -1;
if (mesh.isInternalFace(faceI))
{
neiRegion = cellRegion[mesh.faceNeighbour()[faceI]];
}
else
{
neiRegion = coupledRegion[faceI-mesh.nInternalFaces()];
}
label otherRegion = -1;
if (ownRegion == regionI && neiRegion != regionI)
{
otherRegion = neiRegion;
}
else if (ownRegion != regionI && neiRegion == regionI)
{
otherRegion = ownRegion;
}
else
{
FatalErrorIn("createRegionMesh(..)")
<< "Exposed face:" << faceI
<< " fc:" << mesh.faceCentres()[faceI]
<< " has owner region " << ownRegion
<< " and neighbour region " << neiRegion
<< " when handling region:" << regionI
<< exit(FatalError);
}
if (otherRegion != -1)
{
edge interface(regionI, otherRegion);
// Find the patch.
if (regionI < otherRegion)
{
exposedPatchIDs[i] = interfaceToPatch[interface];
}
else
{
exposedPatchIDs[i] = interfaceToPatch[interface] + 1;
}
}
}
// Remove faces
cellRemover.setRefinement
(
cellsToRemove,
exposedFaces,
exposedPatchIDs,
meshMod
);
autoPtr<polyMesh> newMesh;
autoPtr<mapPolyMesh> map = meshMod.makeMesh
(
newMesh,
IOobject
(
regionName,
newMeshInstance,
mesh.time(),
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh
);
polyBoundaryMesh& newPatches =
const_cast<polyBoundaryMesh&>(newMesh().boundaryMesh());
newPatches.checkParallelSync(true);
// Delete empty patches
// ~~~~~~~~~~~~~~~~~~~~
// Create reordering list to move patches-to-be-deleted to end
labelList oldToNew(newPatches.size(), -1);
label newI = 0;
Info<< "Deleting empty patches" << endl;
// Assumes all non-proc boundaries are on all processors!
forAll (newPatches, patchI)
{
const polyPatch& pp = newPatches[patchI];
if (!isA<processorPolyPatch>(pp))
{
if (returnReduce(pp.size(), sumOp<label>()) > 0)
{
oldToNew[patchI] = newI++;
}
}
}
// Same for processor patches (but need no reduction)
forAll (newPatches, patchI)
{
const polyPatch& pp = newPatches[patchI];
if (isA<processorPolyPatch>(pp) && pp.size())
{
oldToNew[patchI] = newI++;
}
}
const label nNewPatches = newI;
// Move all deleteable patches to the end
forAll (oldToNew, patchI)
{
if (oldToNew[patchI] == -1)
{
oldToNew[patchI] = newI++;
}
}
// Reorder polyPatches and trim empty patches from the end
// of the list
newPatches.reorder(oldToNew);
newPatches.setSize(nNewPatches);
// Write the mesh
Info<< "Writing new mesh" << endl;
newMesh().write();
// Write addressing files like decomposePar
Info<< "Writing addressing to base mesh" << endl;
labelIOList pointRegionAddressing
(
IOobject
(
"pointRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map().pointMap()
);
Info<< "Writing map " << pointRegionAddressing.name()
<< " from region" << regionI
<< " points back to base mesh." << endl;
pointRegionAddressing.write();
labelIOList faceRegionAddressing
(
IOobject
(
"faceRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
newMesh().nFaces()
);
forAll (faceRegionAddressing, faceI)
{
// face + turning index. (see decomposePar)
// Is the face pointing in the same direction?
label oldFaceI = map().faceMap()[faceI];
if
(
map().cellMap()[newMesh().faceOwner()[faceI]]
== mesh.faceOwner()[oldFaceI]
)
{
faceRegionAddressing[faceI] = oldFaceI + 1;
}
else
{
faceRegionAddressing[faceI] = -(oldFaceI + 1);
}
}
Info<< "Writing map " << faceRegionAddressing.name()
<< " from region" << regionI
<< " faces back to base mesh." << endl;
faceRegionAddressing.write();
labelIOList cellRegionAddressing
(
IOobject
(
"cellRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map().cellMap()
);
Info<< "Writing map " << cellRegionAddressing.name()
<< " from region" << regionI
<< " cells back to base mesh." << endl;
cellRegionAddressing.write();
// Calculate and write boundary addressing
{
const polyBoundaryMesh& oldPatches = mesh.boundaryMesh();
const polyBoundaryMesh& newPatches = newMesh().boundaryMesh();
labelIOList boundaryRegionAddressing
(
IOobject
(
"boundaryRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
labelList
(
newMesh().boundaryMesh().size(),
-1
)
);
Info<<"Number of new patches: " << nNewPatches <<endl;
forAll (boundaryRegionAddressing, patchID)
{
const word& curPatchName = newPatches[patchID].name();
forAll (oldPatches, oldPatchI)
{
if (oldPatches[oldPatchI].name() == curPatchName)
{
boundaryRegionAddressing[patchID] = oldPatchI;
}
}
}
Info<< "Writing map " << boundaryRegionAddressing.name()
<< " from region" << regionI
<< " faces back to base mesh." << endl;
boundaryRegionAddressing.write();
}
return map;
}
void createAndWriteRegion
(
const fvMesh& mesh,
const labelList& cellRegion,
const wordList& regionNames,
const EdgeMap<label>& interfaceToPatch,
const label regionI,
const word& newMeshInstance
)
{
Info<< "Creating mesh for region " << regionI
<< ' ' << regionNames[regionI] << endl;
// Create region mesh will write the mesh
// HJ, 19/May/2011
autoPtr<mapPolyMesh> map = createRegionMesh
(
cellRegion,
interfaceToPatch,
mesh,
regionI,
regionNames[regionI],
newMeshInstance
);
// Read in mesh as fvMesh for mapping. HJ, 19/May/2011
fvMesh newMesh
(
IOobject
(
regionNames[regionI],
newMeshInstance,
mesh.time(),
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
// Read in patch map. HJ, 22/May/2011
labelIOList boundaryRegionAddressing
(
IOobject
(
"boundaryRegionAddressing",
newMesh.facesInstance(),
newMesh.meshSubDir,
newMesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
Info<< "Mapping fields" << endl;
// Map existing fields: not needed
// Add subset fields
// Note: real patch map provided in place of identity map hack
// HJ, 22/May/2011
subsetVolFields<volScalarField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetVolFields<volVectorField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetVolFields<volSphericalTensorField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetVolFields<volSymmTensorField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetVolFields<volTensorField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceScalarField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceVectorField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceSphericalTensorField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceSymmTensorField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceTensorField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
// Moved map writing into createRegionMesh. HJ, 20/May/2011
newMesh.objectRegistry::write();
}
// Create for every region-region interface with non-zero size two patches.
// First one is for minimum region to maximum region.
// Note that patches get created in same order on all processors (if parallel)
// since looping over synchronised 'interfaces'.
EdgeMap<label> addRegionPatches
(
fvMesh& mesh,
const labelList& cellRegion,
const label nCellRegions,
const edgeList& interfaces,
const EdgeMap<label>& interfaceSizes,
const wordList& regionNames
)
{
// Check that all patches are present in same order.
mesh.boundaryMesh().checkParallelSync(true);
Info<< nl << "Adding patches" << nl << endl;
EdgeMap<label> interfaceToPatch(nCellRegions);
forAll (interfaces, interI)
{
const edge& e = interfaces[interI];
if (interfaceSizes[e] > 0)
{
const word inter1 = regionNames[e[0]] + "_to_" + regionNames[e[1]];
const word inter2 = regionNames[e[1]] + "_to_" + regionNames[e[0]];
directMappedWallPolyPatch patch1
(
inter1,
0, // overridden
0, // overridden
0, // overridden
regionNames[e[1]], // sampleRegion
directMappedPatchBase::NEARESTPATCHFACE,
inter2, // samplePatch
point::zero, // offset
mesh.boundaryMesh()
);
label patchI = addPatch(mesh, patch1);
directMappedWallPolyPatch patch2
(
inter2,
0,
0,
0,
regionNames[e[0]], // sampleRegion
directMappedPatchBase::NEARESTPATCHFACE,
inter1,
point::zero, // offset
mesh.boundaryMesh()
);
addPatch(mesh, patch2);
Info<< "For interface between region " << e[0]
<< " and " << e[1] << " added patch " << patchI
<< " " << mesh.boundaryMesh()[patchI].name()
<< endl;
interfaceToPatch.insert(e, patchI);
}
}
return interfaceToPatch;
}
// Find region that covers most of cell zone
label findCorrespondingRegion
(
const labelList& existingZoneID, // per cell the (unique) zoneID
const labelList& cellRegion,
const label nCellRegions,
const label zoneI,
const label minOverlapSize
)
{
// Per region the number of cells in zoneI
labelList cellsInZone(nCellRegions, 0);
forAll (cellRegion, cellI)
{
if (existingZoneID[cellI] == zoneI)
{
cellsInZone[cellRegion[cellI]]++;
}
}
Pstream::listCombineGather(cellsInZone, plusEqOp<label>());
Pstream::listCombineScatter(cellsInZone);
// Pick region with largest overlap of zoneI
label regionI = findMax(cellsInZone);
if (cellsInZone[regionI] < minOverlapSize)
{
// Region covers too little of zone. Not good enough.
regionI = -1;
}
else
{
// Check that region contains no cells that aren't in cellZone.
forAll (cellRegion, cellI)
{
if (cellRegion[cellI] == regionI && existingZoneID[cellI] != zoneI)
{
// cellI in regionI but not in zoneI
regionI = -1;
break;
}
}
// If one in error, all should be in error. Note that branch gets taken
// on all procs.
reduce(regionI, minOp<label>());
}
return regionI;
}
// Get zone per cell
// - non-unique zoning
// - coupled zones
void getZoneID
(
const polyMesh& mesh,
const cellZoneMesh& cellZones,
labelList& zoneID,
labelList& neiZoneID
)
{
// Existing zoneID
zoneID.setSize(mesh.nCells());
zoneID = -1;
forAll (cellZones, zoneI)
{
const cellZone& cz = cellZones[zoneI];
forAll (cz, i)
{
label cellI = cz[i];
if (zoneID[cellI] == -1)
{
zoneID[cellI] = zoneI;
}
else
{
FatalErrorIn("getZoneID(..)")
<< "Cell " << cellI << " with cell centre "
<< mesh.cellCentres()[cellI]
<< " is multiple zones. This is not allowed." << endl
<< "It is in zone " << cellZones[zoneID[cellI]].name()
<< " and in zone " << cellZones[zoneI].name()
<< exit(FatalError);
}
}
}
// Neighbour zoneID.
neiZoneID.setSize(mesh.nFaces()-mesh.nInternalFaces());
forAll (neiZoneID, i)
{
neiZoneID[i] = zoneID[mesh.faceOwner()[i+mesh.nInternalFaces()]];
}
syncTools::swapBoundaryFaceList(mesh, neiZoneID, false);
}
void matchRegions
(
const bool sloppyCellZones,
const polyMesh& mesh,
const label nCellRegions,
const labelList& cellRegion,
labelList& regionToZone,
wordList& regionNames,
labelList& zoneToRegion
)
{
const cellZoneMesh& cellZones = mesh.cellZones();
regionToZone.setSize(nCellRegions, -1);
regionNames.setSize(nCellRegions);
zoneToRegion.setSize(cellZones.size(), -1);
// Get current per cell zoneID
labelList zoneID(mesh.nCells(), -1);
labelList neiZoneID(mesh.nFaces()-mesh.nInternalFaces());
getZoneID(mesh, cellZones, zoneID, neiZoneID);
// Sizes per cellzone
labelList zoneSizes(cellZones.size(), 0);
{
List<wordList> zoneNames(Pstream::nProcs());
zoneNames[Pstream::myProcNo()] = cellZones.names();
Pstream::gatherList(zoneNames);
Pstream::scatterList(zoneNames);
forAll (zoneNames, procI)
{
if (zoneNames[procI] != zoneNames[0])
{
FatalErrorIn("matchRegions(..)")
<< "cellZones not synchronised across processors." << endl
<< "Master has cellZones " << zoneNames[0] << endl
<< "Processor " << procI
<< " has cellZones " << zoneNames[procI]
<< exit(FatalError);
}
}
forAll (cellZones, zoneI)
{
zoneSizes[zoneI] = returnReduce
(
cellZones[zoneI].size(),
sumOp<label>()
);
}
}
if (sloppyCellZones)
{
Info<< "Trying to match regions to existing cell zones;"
<< " region can be subset of cell zone." << nl << endl;
forAll (cellZones, zoneI)
{
label regionI = findCorrespondingRegion
(
zoneID,
cellRegion,
nCellRegions,
zoneI,
label(0.5*zoneSizes[zoneI]) // minimum overlap
);
if (regionI != -1)
{
Info<< "Sloppily matched region " << regionI
//<< " size " << regionSizes[regionI]
<< " to zone " << zoneI << " size " << zoneSizes[zoneI]
<< endl;
zoneToRegion[zoneI] = regionI;
regionToZone[regionI] = zoneI;
regionNames[regionI] = cellZones[zoneI].name();
}
}
}
else
{
Info<< "Trying to match regions to existing cell zones." << nl << endl;
forAll (cellZones, zoneI)
{
label regionI = findCorrespondingRegion
(
zoneID,
cellRegion,
nCellRegions,
zoneI,
1 // minimum overlap
);
if (regionI != -1)
{
zoneToRegion[zoneI] = regionI;
regionToZone[regionI] = zoneI;
regionNames[regionI] = cellZones[zoneI].name();
}
}
}
// Allocate region names for unmatched regions.
forAll (regionToZone, regionI)
{
if (regionToZone[regionI] == -1)
{
regionNames[regionI] = "domain" + Foam::name(regionI);
}
}
}
void writeCellToRegion(const fvMesh& mesh, const labelList& cellRegion)
{
// Write to manual decomposition option
{
labelIOList cellToRegion
(
IOobject
(
"cellToRegion",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
cellRegion
);
cellToRegion.write();
Info<< "Writing region per cell file (for manual decomposition) to "
<< cellToRegion.objectPath() << nl << endl;
}
// Write for postprocessing
{
volScalarField cellToRegion
(
IOobject
(
"cellToRegion",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar("zero", dimless, 0),
zeroGradientFvPatchScalarField::typeName
);
forAll (cellRegion, cellI)
{
cellToRegion[cellI] = cellRegion[cellI];
}
cellToRegion.write();
Info<< "Writing region per cell as volScalarField to "
<< cellToRegion.objectPath() << nl << endl;
}
}
// Main program:
int main(int argc, char *argv[])
{
argList::validOptions.insert("cellZones", "");
argList::validOptions.insert("cellZonesOnly", "");
argList::validOptions.insert("cellZonesFileOnly", "cellZonesName");
argList::validOptions.insert("blockedFaces", "faceSet");
argList::validOptions.insert("makeCellZones", "");
argList::validOptions.insert("largestOnly", "");
argList::validOptions.insert("insidePoint", "point");
argList::validOptions.insert("overwrite", "");
argList::validOptions.insert("detectOnly", "");
argList::validOptions.insert("sloppyCellZones", "");
# include "setRootCase.H"
# include "createTime.H"
runTime.functionObjects().off();
# include "createMesh.H"
const word oldInstance = mesh.pointsInstance();
word blockedFacesName;
if (args.optionFound("blockedFaces"))
{
blockedFacesName = args.option("blockedFaces");
Info<< "Reading blocked internal faces from faceSet "
<< blockedFacesName << nl << endl;
}
bool makeCellZones = args.optionFound("makeCellZones");
bool largestOnly = args.optionFound("largestOnly");
bool insidePoint = args.optionFound("insidePoint");
bool useCellZones = args.optionFound("cellZones");
bool useCellZonesOnly = args.optionFound("cellZonesOnly");
bool useCellZonesFile = args.optionFound("cellZonesFileOnly");
bool overwrite = args.optionFound("overwrite");
bool detectOnly = args.optionFound("detectOnly");
bool sloppyCellZones = args.optionFound("sloppyCellZones");
if
(
(useCellZonesOnly || useCellZonesFile)
&& (
blockedFacesName != word::null
|| useCellZones
)
)
{
FatalErrorIn(args.executable())
<< "You cannot specify both -cellZonesOnly or -cellZonesFileOnly"
<< " (which specify complete split)"
<< " in combination with -blockedFaces or -cellZones"
<< " (which imply a split based on topology)"
<< exit(FatalError);
}
if (insidePoint && largestOnly)
{
FatalErrorIn(args.executable())
<< "You cannot specify both -largestOnly"
<< " (keep region with most cells)"
<< " and -insidePoint (keep region containing point)"
<< exit(FatalError);
}
const cellZoneMesh& cellZones = mesh.cellZones();
// Existing zoneID
labelList zoneID(mesh.nCells(), -1);
// Neighbour zoneID
labelList neiZoneID(mesh.nFaces() - mesh.nInternalFaces());
getZoneID(mesh, cellZones, zoneID, neiZoneID);
// Determine per cell the region it belongs to
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// cellRegion is the labelList with the region per cell.
labelList cellRegion;
// Region per zone
labelList regionToZone;
// Name of region
wordList regionNames;
// Zone to region
labelList zoneToRegion;
label nCellRegions = 0;
if (useCellZonesOnly)
{
Info<< "Using current cellZones to split mesh into regions."
<< " This requires all"
<< " cells to be in one and only one cellZone." << nl << endl;
label unzonedCellI = findIndex(zoneID, -1);
if (unzonedCellI != -1)
{
FatalErrorIn(args.executable())
<< "For the cellZonesOnly option all cells "
<< "have to be in a cellZone." << endl
<< "Cell " << unzonedCellI
<< " at" << mesh.cellCentres()[unzonedCellI]
<< " is not in a cellZone. There might be more unzoned cells."
<< exit(FatalError);
}
cellRegion = zoneID;
nCellRegions = gMax(cellRegion) + 1;
regionToZone.setSize(nCellRegions);
regionNames.setSize(nCellRegions);
zoneToRegion.setSize(cellZones.size(), -1);
for (label regionI = 0; regionI < nCellRegions; regionI++)
{
regionToZone[regionI] = regionI;
zoneToRegion[regionI] = regionI;
regionNames[regionI] = cellZones[regionI].name();
}
}
else if (useCellZonesFile)
{
const word zoneFile = args.option("cellZonesFileOnly");
Info<< "Reading split from cellZones file " << zoneFile << endl
<< "This requires all"
<< " cells to be in one and only one cellZone." << nl << endl;
cellZoneMesh newCellZones
(
IOobject
(
zoneFile,
mesh.facesInstance(),
polyMesh::meshSubDir,
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
mesh
);
labelList newZoneID(mesh.nCells(), -1);
labelList newNeiZoneID(mesh.nFaces()-mesh.nInternalFaces());
getZoneID(mesh, newCellZones, newZoneID, newNeiZoneID);
label unzonedCellI = findIndex(newZoneID, -1);
if (unzonedCellI != -1)
{
FatalErrorIn(args.executable())
<< "For the cellZonesFileOnly option all cells "
<< "have to be in a cellZone." << endl
<< "Cell " << unzonedCellI
<< " at" << mesh.cellCentres()[unzonedCellI]
<< " is not in a cellZone. There might be more unzoned cells."
<< exit(FatalError);
}
cellRegion = newZoneID;
nCellRegions = gMax(cellRegion) + 1;
zoneToRegion.setSize(newCellZones.size(), -1);
regionToZone.setSize(nCellRegions);
regionNames.setSize(nCellRegions);
for (label regionI = 0; regionI < nCellRegions; regionI++)
{
regionToZone[regionI] = regionI;
zoneToRegion[regionI] = regionI;
regionNames[regionI] = newCellZones[regionI].name();
}
}
else
{
// Determine connected regions
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Mark additional faces that are blocked
boolList blockedFace;
// Read from faceSet
if (blockedFacesName.size())
{
faceSet blockedFaceSet(mesh, blockedFacesName);
Info<< "Read "
<< returnReduce(blockedFaceSet.size(), sumOp<label>())
<< " blocked faces from set " << blockedFacesName
<< nl << endl;
blockedFace.setSize(mesh.nFaces(), false);
forAllConstIter(faceSet, blockedFaceSet, iter)
{
blockedFace[iter.key()] = true;
}
}
// Imply from differing cellZones
if (useCellZones)
{
blockedFace.setSize(mesh.nFaces(), false);
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
{
label own = mesh.faceOwner()[faceI];
label nei = mesh.faceNeighbour()[faceI];
if (zoneID[own] != zoneID[nei])
{
blockedFace[faceI] = true;
}
}
// Different cellZones on either side of processor patch.
forAll (neiZoneID, i)
{
label faceI = i+mesh.nInternalFaces();
if (zoneID[mesh.faceOwner()[faceI]] != neiZoneID[i])
{
blockedFace[faceI] = true;
}
}
}
// Do a topological walk to determine regions
regionSplit regions(mesh, blockedFace);
nCellRegions = regions.nRegions();
cellRegion.transfer(regions);
// Make up region names. If possible match them to existing zones.
matchRegions
(
sloppyCellZones,
mesh,
nCellRegions,
cellRegion,
regionToZone,
regionNames,
zoneToRegion
);
}
Info<< endl << "Number of regions:" << nCellRegions << nl << endl;
// Write decomposition to file
writeCellToRegion(mesh, cellRegion);
// Sizes per region
// ~~~~~~~~~~~~~~~~
labelList regionSizes(nCellRegions, 0);
forAll (cellRegion, cellI)
{
regionSizes[cellRegion[cellI]]++;
}
forAll (regionSizes, regionI)
{
reduce(regionSizes[regionI], sumOp<label>());
}
Info<< "Region\tCells" << nl
<< "------\t-----" << endl;
forAll (regionSizes, regionI)
{
Info<< regionI << '\t' << regionSizes[regionI] << nl;
}
Info<< endl;
// Print region to zone
Info<< "Region\tZone\tName" << nl
<< "------\t----\t----" << endl;
forAll (regionToZone, regionI)
{
Info<< regionI << '\t' << regionToZone[regionI] << '\t'
<< regionNames[regionI] << nl;
}
Info<< endl;
// Since we're going to mess with patches make sure all non-processor ones
// are on all processors.
mesh.boundaryMesh().checkParallelSync(true);
// Sizes of interface between regions. From pair of regions to number of
// faces.
edgeList interfaces;
EdgeMap<label> interfaceSizes;
getInterfaceSizes
(
mesh,
cellRegion,
true, // sum in parallel?
interfaces,
interfaceSizes
);
Info<< "Sizes inbetween regions:" << nl << nl
<< "Region\tRegion\tFaces" << nl
<< "------\t------\t-----" << endl;
forAll (interfaces, interI)
{
const edge& e = interfaces[interI];
Info<< e[0] << '\t' << e[1] << '\t' << interfaceSizes[e] << nl;
}
Info<< endl;
if (detectOnly)
{
return 0;
}
// Read objects in time directory
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IOobjectList objects(mesh, runTime.timeName());
// Read vol fields.
PtrList<volScalarField> vsFlds;
ReadFields(mesh, objects, vsFlds);
PtrList<volVectorField> vvFlds;
ReadFields(mesh, objects, vvFlds);
PtrList<volSphericalTensorField> vstFlds;
ReadFields(mesh, objects, vstFlds);
PtrList<volSymmTensorField> vsymtFlds;
ReadFields(mesh, objects, vsymtFlds);
PtrList<volTensorField> vtFlds;
ReadFields(mesh, objects, vtFlds);
// Read surface fields.
PtrList<surfaceScalarField> ssFlds;
ReadFields(mesh, objects, ssFlds);
PtrList<surfaceVectorField> svFlds;
ReadFields(mesh, objects, svFlds);
PtrList<surfaceSphericalTensorField> sstFlds;
ReadFields(mesh, objects, sstFlds);
PtrList<surfaceSymmTensorField> ssymtFlds;
ReadFields(mesh, objects, ssymtFlds);
PtrList<surfaceTensorField> stFlds;
ReadFields(mesh, objects, stFlds);
Info<< endl;
// Remove any demand-driven fields ('S', 'V' etc)
mesh.clearOut();
if (nCellRegions == 1)
{
Info<< "Only one region. Doing nothing." << endl;
}
else if (makeCellZones)
{
Info<< "Putting cells into cellZones instead of splitting mesh."
<< endl;
// Check if region overlaps with existing zone. If so keep.
for (label regionI = 0; regionI < nCellRegions; regionI++)
{
label zoneI = regionToZone[regionI];
if (zoneI != -1)
{
Info<< " Region " << regionI << " : corresponds to existing"
<< " cellZone "
<< zoneI << ' ' << cellZones[zoneI].name() << endl;
}
else
{
// Create new cellZone.
labelList regionCells = findIndices(cellRegion, regionI);
word zoneName = "region" + Foam::name(regionI);
zoneI = cellZones.findZoneID(zoneName);
if (zoneI == -1)
{
zoneI = cellZones.size();
mesh.cellZones().setSize(zoneI+1);
mesh.cellZones().set
(
zoneI,
new cellZone
(
zoneName, // name
regionCells, // addressing
zoneI, // index
cellZones // cellZoneMesh
)
);
}
else
{
mesh.cellZones()[zoneI].clearAddressing();
mesh.cellZones()[zoneI] = regionCells;
}
Info<< " Region " << regionI << " : created new cellZone "
<< zoneI << ' ' << cellZones[zoneI].name() << endl;
}
}
mesh.cellZones().writeOpt() = IOobject::AUTO_WRITE;
if (!overwrite)
{
runTime++;
mesh.setInstance(runTime.timeName());
}
else
{
mesh.setInstance(oldInstance);
}
Info<< "Writing cellZones as new mesh to time " << runTime.timeName()
<< nl << endl;
mesh.write();
// Write cellSets for convenience
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Info<< "Writing cellSets corresponding to cellZones." << nl << endl;
forAll (cellZones, zoneI)
{
const cellZone& cz = cellZones[zoneI];
cellSet(mesh, cz.name(), labelHashSet(cz)).write();
}
}
else
{
// Add patches for interfaces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// Add all possible patches. Empty ones get filtered later on.
Info<< nl << "Adding patches" << nl << endl;
EdgeMap<label> interfaceToPatch
(
addRegionPatches
(
mesh,
cellRegion,
nCellRegions,
interfaces,
interfaceSizes,
regionNames
)
);
if (!overwrite)
{
runTime++;
}
// Create regions
// ~~~~~~~~~~~~~~
if (insidePoint)
{
point insidePoint(args.optionLookup("insidePoint")());
label regionI = -1;
label cellI = mesh.findCell(insidePoint);
Info<< nl << "Found point " << insidePoint << " in cell " << cellI
<< endl;
if (cellI != -1)
{
regionI = cellRegion[cellI];
}
reduce(regionI, maxOp<label>());
Info<< nl
<< "Subsetting region " << regionI
<< " containing point " << insidePoint << endl;
if (regionI == -1)
{
FatalErrorIn(args.executable())
<< "Point " << insidePoint
<< " is not inside the mesh." << nl
<< "Bounding box of the mesh:" << mesh.bounds()
<< exit(FatalError);
}
createAndWriteRegion
(
mesh,
cellRegion,
regionNames,
interfaceToPatch,
regionI,
(overwrite ? oldInstance : runTime.timeName())
);
}
else if (largestOnly)
{
label regionI = findMax(regionSizes);
Info<< nl
<< "Subsetting region " << regionI
<< " of size " << regionSizes[regionI] << endl;
createAndWriteRegion
(
mesh,
cellRegion,
regionNames,
interfaceToPatch,
regionI,
(overwrite ? oldInstance : runTime.timeName())
);
}
else
{
// Split all
for (label regionI = 0; regionI < nCellRegions; regionI++)
{
Info<< nl
<< "Region " << regionI << nl
<< "-------- " << endl;
createAndWriteRegion
(
mesh,
cellRegion,
regionNames,
interfaceToPatch,
regionI,
(overwrite ? oldInstance : runTime.timeName())
);
}
}
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //