This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/preProcessing/molConfig/latticeStructures/BCC.H

179 lines
4.9 KiB
C

labelVector iN(0,0,0);
vector gap = (vector::one)*pow((numberDensity/2.0),-(1.0/3.0));
#include "origin.H"
// Info<< "gap = " << gap << endl;
// Special treatment is required for the first position, i.e. iteration zero.
if (n == 0)
{
latticePosition.x() = (iN.x()*gap.x());
latticePosition.y() = (iN.y()*gap.y());
latticePosition.z() = (iN.z()*gap.z());
// Placing 2 molecules in each unit cell, using the algorithm from
// D. Rapaport, The Art of Molecular Dynamics Simulation, 2nd Ed, p68
for (label iU = 0; iU < 2; iU++)
{
vector unitCellLatticePosition = latticePosition;
if (iU == 1)
{
unitCellLatticePosition += 0.5 * gap;
}
if (originSpecifies == "corner")
{
unitCellLatticePosition -= 0.25*gap;
}
// Info << nl << n << ", " << unitCellLatticePosition;
globalPosition =
origin + transform(latticeToGlobal,unitCellLatticePosition);
partOfLayerInBounds = mesh_.bounds().contains(globalPosition);
if
(
findIndex(mesh_.cellZones()[cZ], mesh_.findCell(globalPosition))
!= -1
)
{
molsPlacedThisIteration++;
initialPositions.append(globalPosition);
initialCelli.append(mesh_.findCell(globalPosition));
}
}
}
else
{
// Place top and bottom caps.
for (iN.z() = -n; iN.z() <= n; iN.z() += 2*n)
{
for (iN.y() = -n; iN.y() <= n; iN.y()++)
{
for (iN.x() = -n; iN.x() <= n; iN.x()++)
{
latticePosition.x() = (iN.x() * gap.x());
latticePosition.y() = (iN.y() * gap.y());
latticePosition.z() = (iN.z() * gap.z());
for (label iU = 0; iU < 2; iU++)
{
vector unitCellLatticePosition = latticePosition;
if (iU == 1)
{
unitCellLatticePosition += 0.5*gap;
}
if(originSpecifies == "corner")
{
unitCellLatticePosition -= 0.25*gap;
}
// Info << nl << iN << ", " << unitCellLatticePosition;
globalPosition =
origin
+ transform(latticeToGlobal,unitCellLatticePosition);
partOfLayerInBounds =
mesh_.bounds().contains(globalPosition);
if
(
findIndex
(
mesh_.cellZones()[cZ],
mesh_.findCell(globalPosition)
)
!= -1)
{
molsPlacedThisIteration++;
initialPositions.append(globalPosition);
initialCelli.append(mesh_.findCell(globalPosition));
}
}
}
}
}
// Placing sides
for (iN.z() = -(n-1); iN.z() <= (n-1); iN.z()++)
{
for (label iR = 0; iR <= 2*n -1; iR++)
{
latticePosition.x() = (n*gap.x());
latticePosition.y() = ((-n + (iR + 1))*gap.y());
latticePosition.z() = (iN.z() * gap.z());
for (label iK = 0; iK < 4; iK++)
{
for (label iU = 0; iU < 2; iU++)
{
vector unitCellLatticePosition = latticePosition;
if (iU == 1)
{
unitCellLatticePosition += 0.5 * gap;
}
if (originSpecifies == "corner")
{
unitCellLatticePosition -= 0.25*gap;
}
globalPosition =
origin
+ transform(latticeToGlobal,unitCellLatticePosition);
partOfLayerInBounds =
mesh_.bounds().contains(globalPosition);
if
(
findIndex
(
mesh_.cellZones()[cZ],
mesh_.findCell(globalPosition)
)
!= -1
)
{
molsPlacedThisIteration++;
initialPositions.append(globalPosition);
initialCelli.append(mesh_.findCell(globalPosition));
}
}
latticePosition =
vector
(
- latticePosition.y(),
latticePosition.x(),
latticePosition.z()
);
}
}
}
}