This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/preProcessing/mapFields/mapLagrangian.C

273 lines
9.1 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "MapLagrangianFields.H"
#include "Cloud.H"
#include "passiveParticle.H"
#include "meshSearch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
static const scalar perturbFactor = 1E-6;
// Special version of findCell that generates a cell guaranteed to be
// compatible with tracking.
static label findCell(const meshSearch& meshSearcher, const point& pt)
{
const polyMesh& mesh = meshSearcher.mesh();
// Use tracking to find cell containing pt
label cellI = meshSearcher.findCell(pt);
if (cellI >= 0)
{
return cellI;
}
else
{
// See if particle on face by finding nearest face and shifting
// particle.
label faceI = meshSearcher.findNearestBoundaryFace(pt);
if (faceI >= 0)
{
const point& cc = mesh.cellCentres()[mesh.faceOwner()[faceI]];
const point perturbPt = (1-perturbFactor)*pt+perturbFactor*cc;
return meshSearcher.findCell(perturbPt);
}
}
return -1;
}
void mapLagrangian(const meshToMesh& meshToMeshInterp)
{
// Determine which particles are in meshTarget
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// target to source cell map
const labelList& cellAddressing = meshToMeshInterp.cellAddressing();
// Invert celladdressing to get source to target(s).
// Note: could use sparse addressing but that is too storage inefficient
// (Map<labelList>)
labelListList sourceToTargets
(
invertOneToMany(meshToMeshInterp.fromMesh().nCells(), cellAddressing)
);
const fvMesh& meshSource = meshToMeshInterp.fromMesh();
const fvMesh& meshTarget = meshToMeshInterp.toMesh();
const pointField& targetCc = meshTarget.cellCentres();
fileNameList cloudDirs
(
readDir
(
meshSource.time().timePath()/"lagrangian",
fileName::DIRECTORY
)
);
forAll(cloudDirs, cloudI)
{
// Search for list of lagrangian objects for this time
IOobjectList objects
(
meshSource,
meshSource.time().timeName(),
"lagrangian"/cloudDirs[cloudI]
);
IOobject* positionsPtr = objects.lookup("positions");
if (positionsPtr)
{
Info<< nl << " processing cloud " << cloudDirs[cloudI] << endl;
// Read positions & cell
Cloud<passiveParticle> sourceParcels
(
meshSource,
cloudDirs[cloudI],
false
);
Info<< " read " << sourceParcels.size()
<< " parcels from source mesh." << endl;
// Construct empty target cloud
Cloud<passiveParticle> targetParcels
(
meshTarget,
cloudDirs[cloudI],
IDLList<passiveParticle>()
);
label sourceParticleI = 0;
// Indices of source particles that get added to targetParcels
DynamicList<label> addParticles(sourceParcels.size());
// Unmapped particles
labelHashSet unmappedSource(sourceParcels.size());
// Initial: track from fine-mesh cell centre to particle position
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This requires there to be no boundary in the way.
forAllConstIter(Cloud<passiveParticle>, sourceParcels, iter)
{
bool foundCell = false;
// Assume that cell from read parcel is the correct one...
if (iter().cell() >= 0)
{
const labelList& targetCells =
sourceToTargets[iter().cell()];
// Particle probably in one of the targetcells. Try
// all by tracking from their cell centre to the parcel
// position.
forAll(targetCells, i)
{
// Track from its cellcentre to position to make sure.
autoPtr<passiveParticle> newPtr
(
new passiveParticle
(
targetParcels,
targetCc[targetCells[i]],
targetCells[i]
)
);
passiveParticle& newP = newPtr();
scalar fraction = 0;
label faceI = newP.track(iter().position(), fraction);
if (faceI < 0 && newP.cell() >= 0)
{
// Hit position.
foundCell = true;
addParticles.append(sourceParticleI);
targetParcels.addParticle(newPtr.ptr());
break;
}
}
}
if (!foundCell)
{
// Store for closer analysis
unmappedSource.insert(sourceParticleI);
}
sourceParticleI++;
}
Info<< " after meshToMesh addressing found "
<< targetParcels.size()
<< " parcels in target mesh." << endl;
// Do closer inspection for unmapped particles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (unmappedSource.size() > 0)
{
meshSearch targetSearcher(meshTarget, false);
sourceParticleI = 0;
forAllIter(Cloud<passiveParticle>, sourceParcels, iter)
{
if (unmappedSource.found(sourceParticleI))
{
label targetCell =
findCell(targetSearcher, iter().position());
if (targetCell >= 0)
{
unmappedSource.erase(sourceParticleI);
addParticles.append(sourceParticleI);
iter().cell()=targetCell;
targetParcels.addParticle
(
sourceParcels.remove(&iter())
);
}
}
sourceParticleI++;
}
}
addParticles.shrink();
Info<< " after additional mesh searching found "
<< targetParcels.size() << " parcels in target mesh." << endl;
if (addParticles.size() > 0)
{
IOPosition<passiveParticle>(targetParcels).write();
// addParticles now contains the indices of the sourceMesh
// particles that were appended to the target mesh.
// Map lagrangian fields
// ~~~~~~~~~~~~~~~~~~~~~
MapLagrangianFields<label>
(cloudDirs[cloudI], objects, meshToMeshInterp, addParticles);
MapLagrangianFields<scalar>
(cloudDirs[cloudI], objects, meshToMeshInterp, addParticles);
MapLagrangianFields<vector>
(cloudDirs[cloudI], objects, meshToMeshInterp, addParticles);
MapLagrangianFields<sphericalTensor>
(cloudDirs[cloudI], objects, meshToMeshInterp, addParticles);
MapLagrangianFields<symmTensor>
(cloudDirs[cloudI], objects, meshToMeshInterp, addParticles);
MapLagrangianFields<tensor>
(cloudDirs[cloudI], objects, meshToMeshInterp, addParticles);
}
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //