This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/mesh/manipulation/refineMesh/refineMesh.C

517 lines
12 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Utility to refine cells in multiple directions. Either supply -all
option to refine all cells (3D refinement for 3D cases; 2D for 2D cases)
or reads a refineMeshDict with
- cellSet to refine
- directions to refine
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "polyMesh.H"
#include "Time.H"
#include "undoableMeshCutter.H"
#include "hexCellLooper.H"
#include "cellSet.H"
#include "twoDPointCorrector.H"
#include "directions.H"
#include "OFstream.H"
#include "multiDirRefinement.H"
#include "labelIOList.H"
#include "wedgePolyPatch.H"
#include "plane.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Max cos angle for edges to be considered aligned with axis.
static const scalar edgeTol = 1E-3;
// Calculate some edge statistics on mesh.
void printEdgeStats(const primitiveMesh& mesh)
{
label nX = 0;
label nY = 0;
label nZ = 0;
scalar minX = GREAT;
scalar maxX = -GREAT;
vector x(1, 0, 0);
scalar minY = GREAT;
scalar maxY = -GREAT;
vector y(0, 1, 0);
scalar minZ = GREAT;
scalar maxZ = -GREAT;
vector z(0, 0, 1);
scalar minOther = GREAT;
scalar maxOther = -GREAT;
const edgeList& edges = mesh.edges();
forAll(edges, edgeI)
{
const edge& e = edges[edgeI];
vector eVec(e.vec(mesh.points()));
scalar eMag = mag(eVec);
eVec /= eMag;
if (mag(eVec & x) > 1-edgeTol)
{
minX = min(minX, eMag);
maxX = max(maxX, eMag);
nX++;
}
else if (mag(eVec & y) > 1-edgeTol)
{
minY = min(minY, eMag);
maxY = max(maxY, eMag);
nY++;
}
else if (mag(eVec & z) > 1-edgeTol)
{
minZ = min(minZ, eMag);
maxZ = max(maxZ, eMag);
nZ++;
}
else
{
minOther = min(minOther, eMag);
maxOther = max(maxOther, eMag);
}
}
Pout<< "Mesh edge statistics:" << endl
<< " x aligned : number:" << nX << "\tminLen:" << minX
<< "\tmaxLen:" << maxX << endl
<< " y aligned : number:" << nY << "\tminLen:" << minY
<< "\tmaxLen:" << maxY << endl
<< " z aligned : number:" << nZ << "\tminLen:" << minZ
<< "\tmaxLen:" << maxZ << endl
<< " other : number:" << mesh.nEdges() - nX - nY - nZ
<< "\tminLen:" << minOther
<< "\tmaxLen:" << maxOther << endl << endl;
}
// Return index of coordinate axis.
label axis(const vector& normal)
{
label axisIndex = -1;
if (mag(normal & point(1, 0, 0)) > (1-edgeTol))
{
axisIndex = 0;
}
else if (mag(normal & point(0, 1, 0)) > (1-edgeTol))
{
axisIndex = 1;
}
else if (mag(normal & point(0, 0, 1)) > (1-edgeTol))
{
axisIndex = 2;
}
return axisIndex;
}
//- Returns -1 or cartesian coordinate component (0=x, 1=y, 2=z) of normal
// in case of 2D mesh
label twoDNess(const polyMesh& mesh)
{
const pointField& ctrs = mesh.cellCentres();
if (ctrs.size() < 2)
{
return -1;
}
//
// 1. All cell centres on single plane aligned with x, y or z
//
// Determine 3 points to base plane on.
vector vec10 = ctrs[1] - ctrs[0];
vec10 /= mag(vec10);
label otherCellI = -1;
for (label cellI = 2; cellI < ctrs.size(); cellI++)
{
vector vec(ctrs[cellI] - ctrs[0]);
vec /= mag(vec);
if (mag(vec & vec10) < 0.9)
{
// ctrs[cellI] not in line with n
otherCellI = cellI;
break;
}
}
if (otherCellI == -1)
{
// Cannot find cell to make decent angle with cell0-cell1 vector.
// Note: what to do here? All cells (almost) in one line. Maybe 1D case?
return -1;
}
plane cellPlane(ctrs[0], ctrs[1], ctrs[otherCellI]);
forAll(ctrs, cellI)
{
const labelList& cEdges = mesh.cellEdges()[cellI];
scalar minLen = GREAT;
forAll(cEdges, i)
{
minLen = min(minLen, mesh.edges()[cEdges[i]].mag(mesh.points()));
}
if (cellPlane.distance(ctrs[cellI]) > 1E-6*minLen)
{
// Centres not in plane
return -1;
}
}
label axisIndex = axis(cellPlane.normal());
if (axisIndex == -1)
{
return axisIndex;
}
const polyBoundaryMesh& patches = mesh.boundaryMesh();
//
// 2. No edges without points on boundary
//
// Mark boundary points
boolList boundaryPoint(mesh.allPoints().size(), false);
forAll(patches, patchI)
{
const polyPatch& patch = patches[patchI];
forAll(patch, patchFaceI)
{
const face& f = patch[patchFaceI];
forAll(f, fp)
{
boundaryPoint[f[fp]] = true;
}
}
}
const edgeList& edges = mesh.edges();
forAll(edges, edgeI)
{
const edge& e = edges[edgeI];
if (!boundaryPoint[e.start()] && !boundaryPoint[e.end()])
{
// Edge has no point on boundary.
return -1;
}
}
// 3. For all non-wedge patches: all faces either perp or aligned with
// cell-plane normal. (wedge patches already checked upon construction)
forAll(patches, patchI)
{
const polyPatch& patch = patches[patchI];
if
(
typeid(patch) != typeid(wedgePolyPatch)
)
{
const vectorField& n = patch.faceAreas();
scalarField cosAngle = mag(n/mag(n) & cellPlane.normal());
if (mag(min(cosAngle) - max(cosAngle)) > 1E-6)
{
// cosAngle should be either ~1 over all faces (2D front and
// back) or ~0 (all other patches perp to 2D)
return -1;
}
}
}
return axisIndex;
}
// Main program:
int main(int argc, char *argv[])
{
Foam::argList::validOptions.insert("dict", "");
Foam::argList::validOptions.insert("overwrite", "");
# include "setRootCase.H"
# include "createTime.H"
# include "createPolyMesh.H"
printEdgeStats(mesh);
//
// Read/construct control dictionary
//
bool readDict = args.options().found("dict");
bool overwrite = args.options().found("overwrite");
// List of cells to refine
labelList refCells;
// Dictionary to control refinement
dictionary refineDict;
if (readDict)
{
Info<< "Refining according to refineMeshDict" << nl << endl;
refineDict =
IOdictionary
(
IOobject
(
"refineMeshDict",
runTime.system(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
word setName(refineDict.lookup("set"));
cellSet cells(mesh, setName);
Pout<< "Read " << cells.size() << " cells from cellSet "
<< cells.instance()/cells.local()/cells.name()
<< endl << endl;
refCells = cells.toc();
}
else
{
Info<< "Refining all cells" << nl << endl;
// Select all cells
refCells.setSize(mesh.nCells());
forAll(mesh.cells(), cellI)
{
refCells[cellI] = cellI;
}
// Set refinement directions based on 2D/3D
label axisIndex = twoDNess(mesh);
if (axisIndex == -1)
{
Info<< "3D case; refining all directions" << nl << endl;
wordList directions(3);
directions[0] = "tan1";
directions[1] = "tan2";
directions[2] = "normal";
refineDict.add("directions", directions);
// Use hex cutter
refineDict.add("useHexTopology", "true");
}
else
{
wordList directions(2);
if (axisIndex == 0)
{
Info<< "2D case; refining in directions y,z\n" << endl;
directions[0] = "tan2";
directions[1] = "normal";
}
else if (axisIndex == 1)
{
Info<< "2D case; refining in directions x,z\n" << endl;
directions[0] = "tan1";
directions[1] = "normal";
}
else
{
Info<< "2D case; refining in directions x,y\n" << endl;
directions[0] = "tan1";
directions[1] = "tan2";
}
refineDict.add("directions", directions);
// Use standard cutter
refineDict.add("useHexTopology", "false");
}
refineDict.add("coordinateSystem", "global");
dictionary coeffsDict;
coeffsDict.add("tan1", vector(1, 0, 0));
coeffsDict.add("tan2", vector(0, 1, 0));
refineDict.add("globalCoeffs", coeffsDict);
refineDict.add("geometricCut", "false");
refineDict.add("writeMesh", "false");
}
string oldTimeName(runTime.timeName());
if (!overwrite)
{
runTime++;
}
// Multi-directional refinement (does multiple iterations)
multiDirRefinement multiRef(mesh, refCells, refineDict);
// Write resulting mesh
mesh.write();
// Get list of cell splits.
// (is for every cell in old mesh the cells they have been split into)
const labelListList& oldToNew = multiRef.addedCells();
// Create cellSet with added cells for easy inspection
cellSet newCells(mesh, "refinedCells", refCells.size());
forAll(oldToNew, oldCellI)
{
const labelList& added = oldToNew[oldCellI];
forAll(added, i)
{
newCells.insert(added[i]);
}
}
Pout<< "Writing refined cells (" << newCells.size() << ") to cellSet "
<< newCells.instance()/newCells.local()/newCells.name()
<< endl << endl;
newCells.write();
//
// Invert cell split to construct map from new to old
//
labelIOList newToOld
(
IOobject
(
"cellMap",
runTime.timeName(),
polyMesh::meshSubDir,
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh.nCells()
);
newToOld.note() =
"From cells in mesh at "
+ runTime.timeName()
+ " to cells in mesh at "
+ oldTimeName;
forAll(oldToNew, oldCellI)
{
const labelList& added = oldToNew[oldCellI];
if (added.size() > 0)
{
forAll(added, i)
{
newToOld[added[i]] = oldCellI;
}
}
else
{
// Unrefined cell
newToOld[oldCellI] = oldCellI;
}
}
Info<< "Writing map from new to old cell to "
<< newToOld.objectPath() << nl << endl;
newToOld.write();
// Some statistics.
printEdgeStats(mesh);
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //