This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/heatTransfer/chtMultiRegionFoam/fluid/solvePressureDifferenceEquation.C

73 lines
2.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Solve pressure difference equation
\*---------------------------------------------------------------------------*/
void solvePressureDifferenceEquation
(
const label corr,
const label nCorr,
const label nNonOrthCorr,
bool& closedVolume,
volScalarField& pd,
const dimensionedScalar& pRef,
const volScalarField& rho,
const volScalarField& psi,
const volScalarField& rUA,
const volScalarField& gh,
surfaceScalarField& phi
)
{
closedVolume = pd.needReference();
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pdEqn
(
fvm::ddt(psi, pd)
+ fvc::ddt(psi)*pRef
+ fvc::ddt(psi, rho)*gh
+ fvc::div(phi)
- fvm::laplacian(rho*rUA, pd)
);
//pdEqn.solve();
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
{
pdEqn.solve(pd.mesh().solver(pd.name() + "Final"));
}
else
{
pdEqn.solve(pd.mesh().solver(pd.name()));
}
if (nonOrth == nNonOrthCorr)
{
phi += pdEqn.flux();
}
}
}