This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/compressible/rhoCentralFoam/rhoCentralFoam.C

226 lines
7 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
rhoCentralFoam
Description
Density-based compressible flow solver based on central-upwind schemes of
Kurganov and Tadmor
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "basicThermo.H"
#include "zeroGradientFvPatchFields.H"
#include "fixedRhoFvPatchScalarField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readThermophysicalProperties.H"
# include "readTimeControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
# include "readFluxScheme.H"
dimensionedScalar v_zero("v_zero",dimVolume/dimTime, 0.0);
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
// --- upwind interpolation of primitive fields on faces
surfaceScalarField rho_pos =
fvc::interpolate(rho, pos, "reconstruct(rho)");
surfaceScalarField rho_neg =
fvc::interpolate(rho, neg, "reconstruct(rho)");
surfaceVectorField rhoU_pos =
fvc::interpolate(rhoU, pos, "reconstruct(U)");
surfaceVectorField rhoU_neg =
fvc::interpolate(rhoU, neg, "reconstruct(U)");
volScalarField rPsi = 1.0/psi;
surfaceScalarField rPsi_pos =
fvc::interpolate(rPsi, pos, "reconstruct(T)");
surfaceScalarField rPsi_neg =
fvc::interpolate(rPsi, neg, "reconstruct(T)");
surfaceScalarField h_pos =
fvc::interpolate(h, pos, "reconstruct(T)");
surfaceScalarField h_neg =
fvc::interpolate(h, neg, "reconstruct(T)");
surfaceVectorField U_pos = rhoU_pos/rho_pos;
surfaceVectorField U_neg = rhoU_neg/rho_neg;
surfaceScalarField p_pos = rho_pos*rPsi_pos;
surfaceScalarField p_neg = rho_neg*rPsi_neg;
surfaceScalarField phiv_pos = U_pos & mesh.Sf();
surfaceScalarField phiv_neg = U_neg & mesh.Sf();
volScalarField c = sqrt(thermo->Cp()/thermo->Cv()*rPsi);
surfaceScalarField cSf_pos = fvc::interpolate(c, pos, "reconstruct(T)")*mesh.magSf();
surfaceScalarField cSf_neg = fvc::interpolate(c, neg, "reconstruct(T)")*mesh.magSf();
surfaceScalarField ap = max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero);
surfaceScalarField am = min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero);
surfaceScalarField a_pos = ap/(ap - am);
surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));
# include "compressibleCourantNo.H"
# include "readTimeControls.H"
# include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
surfaceScalarField aSf = am*a_pos;
if (fluxScheme == "Tadmor")
{
aSf = -0.5*amaxSf;
a_pos = 0.5;
}
surfaceScalarField a_neg = (1.0 - a_pos);
phiv_pos *= a_pos;
phiv_neg *= a_neg;
surfaceScalarField aphiv_pos = phiv_pos - aSf;
surfaceScalarField aphiv_neg = phiv_neg + aSf;
surfaceScalarField phi("phi", aphiv_pos*rho_pos + aphiv_neg*rho_neg);
surfaceVectorField phiUp =
(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)
+ (a_pos*p_pos + a_neg*p_neg)*mesh.Sf();
surfaceScalarField phiEp =
aphiv_pos*rho_pos*(h_pos + 0.5*magSqr(U_pos))
+ aphiv_neg*rho_neg*(h_neg + 0.5*magSqr(U_neg))
+ aSf*p_pos - aSf*p_neg;
volTensorField tauMC("tauMC", mu*dev2(fvc::grad(U)().T()));
// --- Solve density
solve(fvm::ddt(rho) + fvc::div(phi));
// --- Solve momentum
solve(fvm::ddt(rhoU) + fvc::div(phiUp));
U.dimensionedInternalField() =
rhoU.dimensionedInternalField()
/rho.dimensionedInternalField();
U.correctBoundaryConditions();
rhoU.boundaryField() = rho.boundaryField()*U.boundaryField();
volScalarField rhoBydt(rho/runTime.deltaT());
if (!inviscid)
{
solve
(
fvm::ddt(rho, U) - fvc::ddt(rho, U)
- fvm::laplacian(mu, U)
- fvc::div(tauMC)
);
rhoU = rho*U;
}
// --- Solve energy
surfaceScalarField sigmaDotU =
(
(
fvc::interpolate(mu)*mesh.magSf()*fvc::snGrad(U)
+ (mesh.Sf() & fvc::interpolate(tauMC))
)
& (a_pos*U_pos + a_neg*U_neg)
);
solve
(
fvm::ddt(rhoE)
+ fvc::div(phiEp)
- fvc::div(sigmaDotU)
);
h = (rhoE + p)/rho - 0.5*magSqr(U);
h.correctBoundaryConditions();
thermo->correct();
rhoE.boundaryField() =
rho.boundaryField()*
(
h.boundaryField() + 0.5*magSqr(U.boundaryField())
)
- p.boundaryField();
if (!inviscid)
{
volScalarField k("k", thermo->Cp()*mu/Pr);
solve
(
fvm::ddt(rho, h) - fvc::ddt(rho, h)
- fvm::laplacian(thermo->alpha(), h)
+ fvc::laplacian(thermo->alpha(), h)
- fvc::laplacian(k, T)
);
thermo->correct();
rhoE = rho*(h + 0.5*magSqr(U)) - p;
}
p.dimensionedInternalField() =
rho.dimensionedInternalField()
/psi.dimensionedInternalField();
p.correctBoundaryConditions();
rho.boundaryField() = psi.boundaryField()*p.boundaryField();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //