This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/postProcessing/wall/yPlusRAS/yPlusRAS.C
2012-01-12 17:55:59 +01:00

353 lines
9.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
yPlusRAS
Description
Calculates and reports yPlus for all wall patches, for the specified times
when using RAS turbulence models.
Default behaviour assumes operating in incompressible mode. To apply to
compressible RAS cases, use the -compressible option.
Extended version for being able to handle two phase flows using the
-twoPhase option.
Frank Albina, 16/Nov/2009
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "incompressible/incompressibleTwoPhaseMixture/twoPhaseMixture.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/RAS/RASModel/RASModel.H"
#include "nutWallFunction/nutWallFunctionFvPatchScalarField.H"
#include "basicPsiThermo.H"
#include "compressible/RAS/RASModel/RASModel.H"
#include "mutWallFunction/mutWallFunctionFvPatchScalarField.H"
#include "wallDist.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void calcIncompressibleYPlus
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volScalarField& yPlus
)
{
typedef incompressible::RASModels::nutWallFunctionFvPatchScalarField
wallFunctionPatchField;
# include "createPhi.H"
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::RASModel> RASModel
(
incompressible::RASModel::New(U, phi, laminarTransport)
);
const volScalarField::GeometricBoundaryField nutPatches =
RASModel->nut()().boundaryField();
bool foundNutPatch = false;
forAll(nutPatches, patchi)
{
if (isA<wallFunctionPatchField>(nutPatches[patchi]))
{
foundNutPatch = true;
const wallFunctionPatchField& nutPw =
dynamic_cast<const wallFunctionPatchField&>
(nutPatches[patchi]);
yPlus.boundaryField()[patchi] = nutPw.yPlus();
const scalarField& Yp = yPlus.boundaryField()[patchi];
Info<< "Patch " << patchi
<< " named " << nutPw.patch().name()
<< " y+ : min: " << min(Yp) << " max: " << max(Yp)
<< " average: " << average(Yp) << nl << endl;
}
}
if (!foundNutPatch)
{
Info<< " no " << wallFunctionPatchField::typeName << " patches"
<< endl;
}
}
void calcCompressibleYPlus
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volScalarField& yPlus
)
{
typedef compressible::RASModels::mutWallFunctionFvPatchScalarField
wallFunctionPatchField;
IOobject rhoHeader
(
"rho",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (!rhoHeader.headerOk())
{
Info<< " no rho field" << endl;
return;
}
Info << "Reading field rho\n" << endl;
volScalarField rho(rhoHeader, mesh);
# include "compressibleCreatePhi.H"
autoPtr<basicPsiThermo> pThermo
(
basicPsiThermo::New(mesh)
);
basicPsiThermo& thermo = pThermo();
autoPtr<compressible::RASModel> RASModel
(
compressible::RASModel::New
(
rho,
U,
phi,
thermo
)
);
const volScalarField::GeometricBoundaryField mutPatches =
RASModel->mut()().boundaryField();
bool foundMutPatch = false;
forAll(mutPatches, patchi)
{
if (isA<wallFunctionPatchField>(mutPatches[patchi]))
{
foundMutPatch = true;
const wallFunctionPatchField& mutPw =
dynamic_cast<const wallFunctionPatchField&>
(mutPatches[patchi]);
yPlus.boundaryField()[patchi] = mutPw.yPlus();
const scalarField& Yp = yPlus.boundaryField()[patchi];
Info<< "Patch " << patchi
<< " named " << mutPw.patch().name()
<< " y+ : min: " << min(Yp) << " max: " << max(Yp)
<< " average: " << average(Yp) << nl << endl;
}
}
if (!foundMutPatch)
{
Info<< " no " << wallFunctionPatchField::typeName << " patches"
<< endl;
}
}
// Calculate two phase Y+
void calcTwoPhaseYPlus
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volScalarField& yPlus
)
{
typedef incompressible::RASModels::nutWallFunctionFvPatchScalarField
wallFunctionPatchField;
# include "createPhi.H"
IOobject alphaHeader
(
"alpha1",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (!alphaHeader.headerOk())
{
Info<< " no alpha1 field" << endl;
return;
}
Info << "Reading field alpha1\n" << endl;
volScalarField alpha(alphaHeader, mesh);
Info<< "Reading transportProperties\n" << endl;
twoPhaseMixture twoPhaseProperties(U, phi, "alpha1");
autoPtr<incompressible::RASModel> RASModel
(
incompressible::RASModel::New(U, phi, twoPhaseProperties)
);
const volScalarField::GeometricBoundaryField nutPatches =
RASModel->nut()().boundaryField();
bool foundNutPatch = false;
forAll(nutPatches, patchi)
{
if (isA<wallFunctionPatchField>(nutPatches[patchi]))
{
foundNutPatch = true;
const wallFunctionPatchField& nutPw =
dynamic_cast<const wallFunctionPatchField&>
(nutPatches[patchi]);
yPlus.boundaryField()[patchi] = nutPw.yPlus();
const scalarField& Yp = yPlus.boundaryField()[patchi];
Info<< "Patch " << patchi
<< " named " << nutPw.patch().name()
<< " y+ : min: " << min(Yp) << " max: " << max(Yp)
<< " average: " << average(Yp) << nl << endl;
}
}
if (!foundNutPatch)
{
Info<< " no " << wallFunctionPatchField::typeName << " patches"
<< endl;
}
}
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "addRegionOption.H"
argList::validOptions.insert("compressible","");
argList::validOptions.insert("twoPhase","");
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
bool compressible = args.optionFound("compressible");
// Check if two phase model was selected
bool twoPhase = args.optionFound("twoPhase");
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
fvMesh::readUpdateState state = mesh.readUpdate();
// Wall distance
if (timeI == 0 || state != fvMesh::UNCHANGED)
{
Info<< "Calculating wall distance\n" << endl;
wallDist y(mesh, true);
Info<< "Writing wall distance to field "
<< y.name() << nl << endl;
y.write();
}
volScalarField yPlus
(
IOobject
(
"yPlus",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("yPlus", dimless, 0.0)
);
Info << "Reading field U\n" << endl;
IOobject UHeader
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (UHeader.headerOk())
{
Info << "Reading field U\n" << endl;
volVectorField U(UHeader, mesh);
if (compressible)
{
calcCompressibleYPlus(mesh, runTime, U, yPlus);
}
else if (twoPhase)
{
calcTwoPhaseYPlus(mesh, runTime, U, yPlus);
}
else
{
calcIncompressibleYPlus(mesh, runTime, U, yPlus);
}
}
else
{
Info<< " no U field" << endl;
}
Info<< "Writing yPlus to field " << yPlus.name() << nl << endl;
yPlus.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //