84 lines
2.1 KiB
C
84 lines
2.1 KiB
C
{
|
|
volScalarField rUA = 1.0/UEqn.A();
|
|
|
|
for (int corr = 0; corr < nCorr; corr++)
|
|
{
|
|
U = rUA*UEqn.H();
|
|
|
|
surfaceScalarField psif = fvc::interpolate(psi);
|
|
surfaceScalarField rhof = fvc::interpolate(rho);
|
|
|
|
// Execute ddtPhiCorr before recalculating flux
|
|
// HJ, 27/Apr/2010
|
|
surfaceScalarField phid
|
|
(
|
|
"phid",
|
|
psif*(fvc::interpolate(U) & mesh.Sf())
|
|
);
|
|
|
|
// Make flux relative within the MRF zone
|
|
mrfZones.relativeFlux(psif, phid);
|
|
|
|
// Calculate phi for boundary conditions
|
|
phi = fvc::interpolate(rho*U) & mesh.Sf();
|
|
|
|
// Make flux relative within the MRF zone
|
|
mrfZones.relativeFlux(rhof, phi);
|
|
|
|
p.storePrevIter();
|
|
|
|
for (int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++)
|
|
{
|
|
fvScalarMatrix pEqn
|
|
(
|
|
fvm::ddt(psi, p)
|
|
+ fvm::div(phid, p)
|
|
- fvm::laplacian(rho*rUA, p)
|
|
);
|
|
|
|
// Retain the residual from the first pressure solution
|
|
eqnResidual = pEqn.solve().initialResidual();
|
|
|
|
if (corr == 0 && nonOrth == 0)
|
|
{
|
|
maxResidual = max(eqnResidual, maxResidual);
|
|
}
|
|
|
|
// Calculate the flux
|
|
if (nonOrth == nNonOrthCorr)
|
|
{
|
|
phi = pEqn.flux();
|
|
}
|
|
}
|
|
|
|
# include "compressibleContinuityErrs.H"
|
|
|
|
// Explicitly relax the pressure for momentum corrector
|
|
p.relax();
|
|
|
|
U -= rUA*fvc::grad(p);
|
|
U.correctBoundaryConditions();
|
|
}
|
|
|
|
// Bound the pressure
|
|
if (min(p) < pMin || max(p) > pMax)
|
|
{
|
|
p.max(pMin);
|
|
p.min(pMax);
|
|
p.correctBoundaryConditions();
|
|
}
|
|
|
|
// Bound the velocity
|
|
volScalarField magU = mag(U);
|
|
|
|
if (max(magU) > UMax)
|
|
{
|
|
volScalarField Ulimiter = pos(magU - UMax)*UMax/(magU + smallU)
|
|
+ neg(magU - UMax);
|
|
Ulimiter.max(scalar(0));
|
|
Ulimiter.min(scalar(1));
|
|
|
|
U *= Ulimiter;
|
|
U.correctBoundaryConditions();
|
|
}
|
|
}
|