This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/elasticNonLinULSolidFoam/elasticNonLinULSolidFoam.C
2016-06-21 15:04:12 +02:00

152 lines
4.8 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
elasticNonLinULSolidFoam
Description
Finite volume structural solver employing a incremental strain updated
Lagrangian approach.
Valid for small strains, finite displacements and finite rotations.
Author
Philip Cardiff UCD
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "constitutiveModel.H"
#include "solidInterface.H"
#include "volPointInterpolation.H"
#include "pointPatchInterpolation.H"
#include "primitivePatchInterpolation.H"
#include "pointFields.H"
#include "twoDPointCorrector.H"
#include "leastSquaresVolPointInterpolation.H"
#include "processorFvPatchFields.H"
#include "transformGeometricField.H"
#include "symmetryPolyPatch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readDivDSigmaExpMethod.H"
# include "readDivDSigmaLargeStrainExpMethod.H"
# include "readMoveMeshMethod.H"
# include "createSolidInterfaceNonLin.H"
# include "findGlobalFaceZones.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while(runTime.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
int iCorr = 0;
lduSolverPerformance solverPerf;
scalar initialResidual = 1.0;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
do
{
DU.storePrevIter();
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaLargeStrainExp.H"
//- Updated lagrangian momentum equation
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho,DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaLargeStrainExp
);
if (solidInterfaceCorr)
{
solidInterfacePtr->correct(DUEqn);
}
solverPerf = DUEqn.solve();
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
DU.relax();
gradDU = fvc::grad(DU);
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual
<< ", inner iters " << solverPerf.nIterations() << endl;
}
while
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&& ++iCorr < nCorr
);
Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr << endl;
# include "moveMesh.H"
# include "rotateFields.H"
# include "writeFields.H"
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //