This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/elasticPlasticSolidFoam/elasticPlasticSolidFoam.C
2013-07-18 10:50:29 +02:00

177 lines
5.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Application
elasticPlasticSolidFoam
Description
Transient/steady-state segregated finite-volume solver for small strain
elastic plastic solid bodies.
Displacement increment field DU is solved for using a total Lagrangian
approach, also generating the strain tensor field epsilon, the plastic
strain field epsilonP and stress tensor field sigma.
With optional multi-material solid interface correction ensuring
correct tractions on multi-material interfaces.
Author
A. Karac, A. Ivankovic. Solver re-organised by P. Cardiff
Multi-material correction by Tukovic et al. 2012
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "plasticityModel.H"
#include "solidInterface.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readDivDSigmaExpMethod.H"
# include "createSolidInterface.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating displacement field\n" << endl;
for (runTime++; !runTime.end(); runTime++)
{
Info<< "Time: " << runTime.timeName() << nl << endl;
# include "readStressedFoamControls.H"
int iCorr = 0;
scalar initialResidual = 0;
scalar relativeResidual = GREAT;
lduMatrix::solverPerformance solverPerf;
lduMatrix::debug = 0;
const volSymmTensorField& DEpsilonP = rheology.DEpsilonP();
do
{
DU.storePrevIter();
# include "calculateDivDSigmaExp.H"
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho, DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
- fvc::div(2*muf*(mesh.Sf() & fvc::interpolate(DEpsilonP)))
);
if(solidInterfaceCorr)
{
solidInterfacePtr->correct(DUEqn);
}
solverPerf = DUEqn.solve();
if(iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
DU.relax();
if(solidInterfaceCorr)
{
gradDU = solidInterfacePtr->grad(DU);
}
else
{
gradDU = fvc::grad(DU);
}
# include "calculateRelativeResidual.H"
rheology.correct();
mu = rheology.newMu();
lambda = rheology.newLambda();
muf = fvc::interpolate(rheology.newMu());
lambdaf = fvc::interpolate(rheology.newLambda());
if(solidInterfaceCorr)
{
solidInterfacePtr->modifyProperties(muf, lambdaf);
}
Info << "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", residual = " << solverPerf.initialResidual() << endl;
}
while
(
solverPerf.initialResidual() > convergenceTolerance
&& ++iCorr < nCorr
);
Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr << endl;
lduMatrix::debug = 1;
# include "calculateDEpsilonDSigma.H"
U += DU;
epsilon += DEpsilon;
epsilonP += rheology.DEpsilonP();
sigma += DSigma;
rheology.updateYieldStress();
# include "writeFields.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //