640 lines
20 KiB
C
640 lines
20 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | foam-extend: Open Source CFD
|
|
\\ / O peration | Version: 3.2
|
|
\\ / A nd | Web: http://www.foam-extend.org
|
|
\\/ M anipulation | For copyright notice see file Copyright
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of foam-extend.
|
|
|
|
foam-extend is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
foam-extend is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "faFieldReconstructor.H"
|
|
#include "Time.H"
|
|
#include "PtrList.H"
|
|
#include "faPatchFields.H"
|
|
#include "emptyFaPatch.H"
|
|
#include "emptyFaPatchField.H"
|
|
#include "emptyFaePatchField.H"
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
template<class Type>
|
|
Foam::tmp<Foam::GeometricField<Type, Foam::faPatchField, Foam::areaMesh> >
|
|
Foam::faFieldReconstructor::reconstructFaAreaField
|
|
(
|
|
const IOobject& fieldIoObject
|
|
)
|
|
{
|
|
// Read the field for all the processors
|
|
PtrList<GeometricField<Type, faPatchField, areaMesh> > procFields
|
|
(
|
|
procMeshes_.size()
|
|
);
|
|
|
|
forAll (procMeshes_, procI)
|
|
{
|
|
procFields.set
|
|
(
|
|
procI,
|
|
new GeometricField<Type, faPatchField, areaMesh>
|
|
(
|
|
IOobject
|
|
(
|
|
fieldIoObject.name(),
|
|
procMeshes_[procI].time().timeName(),
|
|
procMeshes_[procI](),
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procMeshes_[procI]
|
|
)
|
|
);
|
|
}
|
|
|
|
// Create the internalField
|
|
Field<Type> internalField(mesh_.nFaces());
|
|
|
|
// Create the patch fields
|
|
PtrList<faPatchField<Type> > patchFields(mesh_.boundary().size());
|
|
|
|
|
|
// Create global mesh patchs starts
|
|
|
|
labelList gStarts(mesh_.boundary().size(), -1);
|
|
|
|
if (mesh_.boundary().size() > 0)
|
|
{
|
|
gStarts[0] = mesh_.nInternalEdges();
|
|
}
|
|
|
|
for(label i=1; i<mesh_.boundary().size(); i++)
|
|
{
|
|
gStarts[i] = gStarts[i-1] + mesh_.boundary()[i-1].labelList::size();
|
|
}
|
|
|
|
forAll (procMeshes_, procI)
|
|
{
|
|
const GeometricField<Type, faPatchField, areaMesh>& procField =
|
|
procFields[procI];
|
|
|
|
// Set the face values in the reconstructed field
|
|
internalField.rmap
|
|
(
|
|
procField.internalField(),
|
|
faceProcAddressing_[procI]
|
|
);
|
|
|
|
|
|
|
|
// Set the boundary patch values in the reconstructed field
|
|
|
|
labelList starts(procMeshes_[procI].boundary().size(), -1);
|
|
|
|
if(procMeshes_[procI].boundary().size() > 0)
|
|
{
|
|
starts[0] = procMeshes_[procI].nInternalEdges();
|
|
}
|
|
|
|
for(label i=1; i<procMeshes_[procI].boundary().size(); i++)
|
|
{
|
|
starts[i] =
|
|
starts[i-1]
|
|
+ procMeshes_[procI].boundary()[i-1].labelList::size();
|
|
}
|
|
|
|
forAll(boundaryProcAddressing_[procI], patchI)
|
|
{
|
|
// Get patch index of the original patch
|
|
const label curBPatch = boundaryProcAddressing_[procI][patchI];
|
|
|
|
// Get addressing slice for this patch
|
|
|
|
// const labelList::subList cp =
|
|
// procMeshes_[procI].boundary()[patchI].patchSlice
|
|
// (
|
|
// edgeProcAddressing_[procI]
|
|
// );
|
|
|
|
const labelList::subList cp =
|
|
labelList::subList
|
|
(
|
|
edgeProcAddressing_[procI],
|
|
procMeshes_[procI].boundary()[patchI].size(),
|
|
starts[patchI]
|
|
);
|
|
|
|
// check if the boundary patch is not a processor patch
|
|
if (curBPatch >= 0)
|
|
{
|
|
// Regular patch. Fast looping
|
|
|
|
if (!patchFields(curBPatch))
|
|
{
|
|
patchFields.set
|
|
(
|
|
curBPatch,
|
|
faPatchField<Type>::New
|
|
(
|
|
procField.boundaryField()[patchI],
|
|
mesh_.boundary()[curBPatch],
|
|
DimensionedField<Type, areaMesh>::null(),
|
|
faPatchFieldReconstructor
|
|
(
|
|
mesh_.boundary()[curBPatch].size(),
|
|
procField.boundaryField()[patchI].size()
|
|
)
|
|
)
|
|
);
|
|
}
|
|
|
|
const label curPatchStart = gStarts[curBPatch];
|
|
// mesh_.boundary()[curBPatch].start();
|
|
|
|
labelList reverseAddressing(cp.size());
|
|
|
|
forAll(cp, edgeI)
|
|
{
|
|
// Subtract one to take into account offsets for
|
|
// face direction.
|
|
// reverseAddressing[edgeI] = cp[edgeI] - 1 - curPatchStart;
|
|
reverseAddressing[edgeI] = cp[edgeI] - curPatchStart;
|
|
}
|
|
|
|
patchFields[curBPatch].rmap
|
|
(
|
|
procField.boundaryField()[patchI],
|
|
reverseAddressing
|
|
);
|
|
}
|
|
else
|
|
{
|
|
const Field<Type>& curProcPatch =
|
|
procField.boundaryField()[patchI];
|
|
|
|
// In processor patches, there's a mix of internal faces (some
|
|
// of them turned) and possible cyclics. Slow loop
|
|
forAll(cp, edgeI)
|
|
{
|
|
// Subtract one to take into account offsets for
|
|
// face direction.
|
|
// label curE = cp[edgeI] - 1;
|
|
label curE = cp[edgeI];
|
|
|
|
// Is the face on the boundary?
|
|
if (curE >= mesh_.nInternalEdges())
|
|
{
|
|
// label curBPatch = mesh_.boundary().whichPatch(curE);
|
|
label curBPatch = -1;
|
|
|
|
forAll (mesh_.boundary(), pI)
|
|
{
|
|
if
|
|
(
|
|
curE >= gStarts[pI]
|
|
&& curE <
|
|
(
|
|
gStarts[pI]
|
|
+ mesh_.boundary()[pI].labelList::size()
|
|
)
|
|
)
|
|
{
|
|
curBPatch = pI;
|
|
}
|
|
}
|
|
|
|
if (!patchFields(curBPatch))
|
|
{
|
|
patchFields.set
|
|
(
|
|
curBPatch,
|
|
faPatchField<Type>::New
|
|
(
|
|
mesh_.boundary()[curBPatch].type(),
|
|
mesh_.boundary()[curBPatch],
|
|
DimensionedField<Type, areaMesh>::null()
|
|
)
|
|
);
|
|
}
|
|
|
|
// add the edge
|
|
// label curPatchEdge =
|
|
// mesh_.boundary()
|
|
// [curBPatch].whichEdge(curE);
|
|
|
|
label curPatchEdge = curE - gStarts[curBPatch];
|
|
|
|
patchFields[curBPatch][curPatchEdge] =
|
|
curProcPatch[edgeI];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
forAll(mesh_.boundary(), patchI)
|
|
{
|
|
// add empty patches
|
|
if
|
|
(
|
|
typeid(mesh_.boundary()[patchI]) == typeid(emptyFaPatch)
|
|
&& !patchFields(patchI)
|
|
)
|
|
{
|
|
patchFields.set
|
|
(
|
|
patchI,
|
|
faPatchField<Type>::New
|
|
(
|
|
emptyFaPatchField<Type>::typeName,
|
|
mesh_.boundary()[patchI],
|
|
DimensionedField<Type, areaMesh>::null()
|
|
)
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
// Now construct and write the field
|
|
// setting the internalField and patchFields
|
|
return tmp<GeometricField<Type, faPatchField, areaMesh> >
|
|
(
|
|
new GeometricField<Type, faPatchField, areaMesh>
|
|
(
|
|
IOobject
|
|
(
|
|
fieldIoObject.name(),
|
|
mesh_.time().timeName(),
|
|
mesh_(),
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
mesh_,
|
|
procFields[0].dimensions(),
|
|
internalField,
|
|
patchFields
|
|
)
|
|
);
|
|
}
|
|
|
|
|
|
template<class Type>
|
|
Foam::tmp<Foam::GeometricField<Type, Foam::faePatchField, Foam::edgeMesh> >
|
|
Foam::faFieldReconstructor::reconstructFaEdgeField
|
|
(
|
|
const IOobject& fieldIoObject
|
|
)
|
|
{
|
|
// Read the field for all the processors
|
|
PtrList<GeometricField<Type, faePatchField, edgeMesh> > procFields
|
|
(
|
|
procMeshes_.size()
|
|
);
|
|
|
|
forAll (procMeshes_, procI)
|
|
{
|
|
procFields.set
|
|
(
|
|
procI,
|
|
new GeometricField<Type, faePatchField, edgeMesh>
|
|
(
|
|
IOobject
|
|
(
|
|
fieldIoObject.name(),
|
|
procMeshes_[procI].time().timeName(),
|
|
procMeshes_[procI](),
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
procMeshes_[procI]
|
|
)
|
|
);
|
|
}
|
|
|
|
|
|
// Create the internalField
|
|
Field<Type> internalField(mesh_.nInternalEdges());
|
|
|
|
// Create the patch fields
|
|
PtrList<faePatchField<Type> > patchFields(mesh_.boundary().size());
|
|
|
|
|
|
labelList gStarts(mesh_.boundary().size(), -1);
|
|
|
|
if(mesh_.boundary().size() > 0)
|
|
{
|
|
gStarts[0] = mesh_.nInternalEdges();
|
|
}
|
|
|
|
for(label i=1; i<mesh_.boundary().size(); i++)
|
|
{
|
|
gStarts[i] = gStarts[i-1] + mesh_.boundary()[i-1].labelList::size();
|
|
}
|
|
|
|
|
|
forAll (procMeshes_, procI)
|
|
{
|
|
const GeometricField<Type, faePatchField, edgeMesh>& procField =
|
|
procFields[procI];
|
|
|
|
// Set the face values in the reconstructed field
|
|
|
|
// It is necessary to create a copy of the addressing array to
|
|
// take care of the face direction offset trick.
|
|
//
|
|
{
|
|
labelList curAddr(edgeProcAddressing_[procI]);
|
|
|
|
// forAll (curAddr, addrI)
|
|
// {
|
|
// curAddr[addrI] -= 1;
|
|
// }
|
|
|
|
internalField.rmap
|
|
(
|
|
procField.internalField(),
|
|
curAddr
|
|
);
|
|
}
|
|
|
|
// Set the boundary patch values in the reconstructed field
|
|
|
|
labelList starts(procMeshes_[procI].boundary().size(), -1);
|
|
|
|
if(procMeshes_[procI].boundary().size() > 0)
|
|
{
|
|
starts[0] = procMeshes_[procI].nInternalEdges();
|
|
}
|
|
|
|
for(label i=1; i<procMeshes_[procI].boundary().size(); i++)
|
|
{
|
|
starts[i] =
|
|
starts[i-1]
|
|
+ procMeshes_[procI].boundary()[i-1].labelList::size();
|
|
}
|
|
|
|
forAll(boundaryProcAddressing_[procI], patchI)
|
|
{
|
|
// Get patch index of the original patch
|
|
const label curBPatch = boundaryProcAddressing_[procI][patchI];
|
|
|
|
// Get addressing slice for this patch
|
|
|
|
// const labelList::subList cp =
|
|
// procMeshes_[procI].boundary()[patchI].patchSlice
|
|
// (
|
|
// faceProcAddressing_[procI]
|
|
// );
|
|
|
|
const labelList::subList cp =
|
|
labelList::subList
|
|
(
|
|
edgeProcAddressing_[procI],
|
|
procMeshes_[procI].boundary()[patchI].size(),
|
|
starts[patchI]
|
|
);
|
|
|
|
// check if the boundary patch is not a processor patch
|
|
if (curBPatch >= 0)
|
|
{
|
|
// Regular patch. Fast looping
|
|
|
|
if (!patchFields(curBPatch))
|
|
{
|
|
patchFields.set
|
|
(
|
|
curBPatch,
|
|
faePatchField<Type>::New
|
|
(
|
|
procField.boundaryField()[patchI],
|
|
mesh_.boundary()[curBPatch],
|
|
DimensionedField<Type, edgeMesh>::null(),
|
|
faPatchFieldReconstructor
|
|
(
|
|
mesh_.boundary()[curBPatch].size(),
|
|
procField.boundaryField()[patchI].size()
|
|
)
|
|
)
|
|
);
|
|
}
|
|
|
|
const label curPatchStart = gStarts[curBPatch];
|
|
// mesh_.boundary()[curBPatch].start();
|
|
|
|
labelList reverseAddressing(cp.size());
|
|
|
|
forAll(cp, edgeI)
|
|
{
|
|
// Subtract one to take into account offsets for
|
|
// face direction.
|
|
// reverseAddressing[faceI] = cp[faceI] - 1 - curPatchStart;
|
|
reverseAddressing[edgeI] = cp[edgeI] - curPatchStart;
|
|
}
|
|
|
|
patchFields[curBPatch].rmap
|
|
(
|
|
procField.boundaryField()[patchI],
|
|
reverseAddressing
|
|
);
|
|
}
|
|
else
|
|
{
|
|
const Field<Type>& curProcPatch =
|
|
procField.boundaryField()[patchI];
|
|
|
|
// In processor patches, there's a mix of internal faces (some
|
|
// of them turned) and possible cyclics. Slow loop
|
|
forAll(cp, edgeI)
|
|
{
|
|
// label curF = cp[edgeI] - 1;
|
|
label curE = cp[edgeI];
|
|
|
|
// Is the face turned the right side round
|
|
if (curE >= 0)
|
|
{
|
|
// Is the face on the boundary?
|
|
if (curE >= mesh_.nInternalEdges())
|
|
{
|
|
// label curBPatch =
|
|
// mesh_.boundary().whichPatch(curF);
|
|
|
|
label curBPatch = -1;
|
|
|
|
forAll (mesh_.boundary(), pI)
|
|
{
|
|
if
|
|
(
|
|
curE >= gStarts[pI]
|
|
&& curE <
|
|
(
|
|
gStarts[pI]
|
|
+ mesh_.boundary()[pI].labelList::size()
|
|
)
|
|
)
|
|
{
|
|
curBPatch = pI;
|
|
}
|
|
}
|
|
|
|
if (!patchFields(curBPatch))
|
|
{
|
|
patchFields.set
|
|
(
|
|
curBPatch,
|
|
faePatchField<Type>::New
|
|
(
|
|
mesh_.boundary()[curBPatch].type(),
|
|
mesh_.boundary()[curBPatch],
|
|
DimensionedField<Type, edgeMesh>
|
|
::null()
|
|
)
|
|
);
|
|
}
|
|
|
|
// add the face
|
|
// label curPatchFace =
|
|
// mesh_.boundary()
|
|
// [curBPatch].whichEdge(curF);
|
|
|
|
label curPatchEdge = curE - gStarts[curBPatch];
|
|
|
|
patchFields[curBPatch][curPatchEdge] =
|
|
curProcPatch[edgeI];
|
|
}
|
|
else
|
|
{
|
|
// Internal face
|
|
internalField[curE] = curProcPatch[edgeI];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
forAll(mesh_.boundary(), patchI)
|
|
{
|
|
// add empty patches
|
|
if
|
|
(
|
|
typeid(mesh_.boundary()[patchI]) == typeid(emptyFaPatch)
|
|
&& !patchFields(patchI)
|
|
)
|
|
{
|
|
patchFields.set
|
|
(
|
|
patchI,
|
|
faePatchField<Type>::New
|
|
(
|
|
emptyFaePatchField<Type>::typeName,
|
|
mesh_.boundary()[patchI],
|
|
DimensionedField<Type, edgeMesh>::null()
|
|
)
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
// Now construct and write the field
|
|
// setting the internalField and patchFields
|
|
return tmp<GeometricField<Type, faePatchField, edgeMesh> >
|
|
(
|
|
new GeometricField<Type, faePatchField, edgeMesh>
|
|
(
|
|
IOobject
|
|
(
|
|
fieldIoObject.name(),
|
|
mesh_.time().timeName(),
|
|
mesh_(),
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
mesh_,
|
|
procFields[0].dimensions(),
|
|
internalField,
|
|
patchFields
|
|
)
|
|
);
|
|
}
|
|
|
|
|
|
// Reconstruct and write all area fields
|
|
template<class Type>
|
|
void Foam::faFieldReconstructor::reconstructFaAreaFields
|
|
(
|
|
const IOobjectList& objects
|
|
)
|
|
{
|
|
const word& fieldClassName =
|
|
GeometricField<Type, faPatchField, areaMesh>::typeName;
|
|
|
|
IOobjectList fields = objects.lookupClass(fieldClassName);
|
|
|
|
if (fields.size())
|
|
{
|
|
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
|
|
|
|
for
|
|
(
|
|
IOobjectList::const_iterator fieldIter = fields.begin();
|
|
fieldIter != fields.end();
|
|
++fieldIter
|
|
)
|
|
{
|
|
Info << " " << fieldIter()->name() << endl;
|
|
|
|
reconstructFaAreaField<Type>(*fieldIter())().write();
|
|
}
|
|
|
|
Info<< endl;
|
|
}
|
|
}
|
|
|
|
// Reconstruct and write all edge fields
|
|
template<class Type>
|
|
void Foam::faFieldReconstructor::reconstructFaEdgeFields
|
|
(
|
|
const IOobjectList& objects
|
|
)
|
|
{
|
|
const word& fieldClassName =
|
|
GeometricField<Type, faePatchField, edgeMesh>::typeName;
|
|
|
|
IOobjectList fields = objects.lookupClass(fieldClassName);
|
|
|
|
if (fields.size())
|
|
{
|
|
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
|
|
|
|
for
|
|
(
|
|
IOobjectList::const_iterator fieldIter = fields.begin();
|
|
fieldIter != fields.end();
|
|
++fieldIter
|
|
)
|
|
{
|
|
Info<< " " << fieldIter()->name() << endl;
|
|
|
|
reconstructFaEdgeField<Type>(*fieldIter())().write();
|
|
}
|
|
|
|
Info<< endl;
|
|
}
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|