This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/parallelProcessing/reconstructPar/fvFieldReconstructorReconstructFields.C
2013-12-11 16:09:41 +00:00

526 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration |
\\ / A nd | For copyright notice see file Copyright
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fvFieldReconstructor.H"
#include "Time.H"
#include "PtrList.H"
#include "fvPatchFields.H"
#include "emptyFvPatch.H"
#include "emptyFvPatchField.H"
#include "emptyFvsPatchField.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::fvPatchField, Foam::volMesh> >
Foam::fvFieldReconstructor::reconstructFvVolumeField
(
const IOobject& fieldIoObject
)
{
// Read the field for all the processors
PtrList<GeometricField<Type, fvPatchField, volMesh> > procFields
(
procMeshes_.size()
);
forAll (procMeshes_, procI)
{
procFields.set
(
procI,
new GeometricField<Type, fvPatchField, volMesh>
(
IOobject
(
fieldIoObject.name(),
procMeshes_[procI].time().timeName(),
procMeshes_[procI],
IOobject::MUST_READ,
IOobject::NO_WRITE
),
procMeshes_[procI]
)
);
}
// Create the internalField
Field<Type> internalField(mesh_.nCells());
// Create the patch fields
PtrList<fvPatchField<Type> > patchFields(mesh_.boundary().size());
forAll (procMeshes_, procI)
{
const GeometricField<Type, fvPatchField, volMesh>& procField =
procFields[procI];
// Set the cell values in the reconstructed field
internalField.rmap
(
procField.internalField(),
cellProcAddressing_[procI]
);
// Set the boundary patch values in the reconstructed field
forAll (boundaryProcAddressing_[procI], patchI)
{
// Get patch index of the original patch
const label curBPatch = boundaryProcAddressing_[procI][patchI];
// Get addressing slice for this patch
const labelList::subList cp =
procMeshes_[procI].boundary()[patchI].patchSlice
(
faceProcAddressing_[procI]
);
// check if the boundary patch is not a processor patch
if (curBPatch >= 0)
{
// Regular patch. Fast looping
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
fvPatchField<Type>::New
(
procField.boundaryField()[patchI],
mesh_.boundary()[curBPatch],
DimensionedField<Type, volMesh>::null(),
fvPatchFieldReconstructor
(
mesh_.boundary()[curBPatch].size(),
procField.boundaryField()[patchI].size()
)
)
);
}
const label curPatchStart =
mesh_.boundaryMesh()[curBPatch].start();
labelList reverseAddressing(cp.size());
forAll (cp, faceI)
{
// Subtract one to take into account offsets for
// face direction.
reverseAddressing[faceI] = cp[faceI] - 1 - curPatchStart;
}
patchFields[curBPatch].rmap
(
procField.boundaryField()[patchI],
reverseAddressing
);
}
else
{
const Field<Type>& curProcPatch =
procField.boundaryField()[patchI];
// In processor patches, there's a mix of internal faces (some
// of them turned) and possible cyclics. Slow loop
forAll (cp, faceI)
{
// Subtract one to take into account offsets for
// face direction.
label curF = cp[faceI] - 1;
// Is the face on the boundary?
if (curF >= mesh_.nInternalFaces())
{
label curBPatch =
mesh_.boundaryMesh().whichPatch(curF);
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
fvPatchField<Type>::New
(
mesh_.boundary()[curBPatch].type(),
mesh_.boundary()[curBPatch],
DimensionedField<Type, volMesh>::null()
)
);
}
// add the face
label curPatchFace =
mesh_.boundaryMesh()
[curBPatch].whichFace(curF);
patchFields[curBPatch][curPatchFace] =
curProcPatch[faceI];
}
}
}
}
}
forAll (mesh_.boundary(), patchI)
{
// add empty patches
if
(
isType<emptyFvPatch>(mesh_.boundary()[patchI])
&& !patchFields(patchI)
)
{
patchFields.set
(
patchI,
fvPatchField<Type>::New
(
emptyFvPatchField<Type>::typeName,
mesh_.boundary()[patchI],
DimensionedField<Type, volMesh>::null()
)
);
}
}
// Now construct and write the field
// setting the internalField and patchFields
return tmp<GeometricField<Type, fvPatchField, volMesh> >
(
new GeometricField<Type, fvPatchField, volMesh>
(
IOobject
(
fieldIoObject.name(),
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
procFields[0].dimensions(),
internalField,
patchFields
)
);
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::fvsPatchField, Foam::surfaceMesh> >
Foam::fvFieldReconstructor::reconstructFvSurfaceField
(
const IOobject& fieldIoObject
)
{
// Read the field for all the processors
PtrList<GeometricField<Type, fvsPatchField, surfaceMesh> > procFields
(
procMeshes_.size()
);
forAll (procMeshes_, procI)
{
procFields.set
(
procI,
new GeometricField<Type, fvsPatchField, surfaceMesh>
(
IOobject
(
fieldIoObject.name(),
procMeshes_[procI].time().timeName(),
procMeshes_[procI],
IOobject::MUST_READ,
IOobject::NO_WRITE
),
procMeshes_[procI]
)
);
}
// Create the internalField
Field<Type> internalField(mesh_.nInternalFaces());
// Create the patch fields
PtrList<fvsPatchField<Type> > patchFields(mesh_.boundary().size());
forAll (procMeshes_, procI)
{
const GeometricField<Type, fvsPatchField, surfaceMesh>& procField =
procFields[procI];
// Set the face values in the reconstructed field
// It is necessary to create a copy of the addressing array to
// take care of the face direction offset trick.
//
{
labelList curAddr(faceProcAddressing_[procI]);
forAll (curAddr, addrI)
{
curAddr[addrI] -= 1;
}
internalField.rmap
(
procField.internalField(),
curAddr
);
}
// Set the boundary patch values in the reconstructed field
forAll (boundaryProcAddressing_[procI], patchI)
{
// Get patch index of the original patch
const label curBPatch = boundaryProcAddressing_[procI][patchI];
// Get addressing slice for this patch
const labelList::subList cp =
procMeshes_[procI].boundary()[patchI].patchSlice
(
faceProcAddressing_[procI]
);
// Check if the boundary patch is not a processor patch
if (curBPatch >= 0)
{
// Regular patch. Fast looping
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
fvsPatchField<Type>::New
(
procField.boundaryField()[patchI],
mesh_.boundary()[curBPatch],
DimensionedField<Type, surfaceMesh>::null(),
fvPatchFieldReconstructor
(
mesh_.boundary()[curBPatch].size(),
procField.boundaryField()[patchI].size()
)
)
);
}
const label curPatchStart =
mesh_.boundaryMesh()[curBPatch].start();
labelList reverseAddressing(cp.size());
forAll (cp, faceI)
{
// Subtract one to take into account offsets for
// face direction.
reverseAddressing[faceI] = cp[faceI] - 1 - curPatchStart;
}
patchFields[curBPatch].rmap
(
procField.boundaryField()[patchI],
reverseAddressing
);
}
else
{
const Field<Type>& curProcPatch =
procField.boundaryField()[patchI];
// In processor patches, there's a mix of internal faces (some
// of them turned) and possible cyclics. Slow loop
forAll (cp, faceI)
{
label curF = cp[faceI] - 1;
// Is the face turned the right side round
if (curF >= 0)
{
// Is the face on the boundary?
if (curF >= mesh_.nInternalFaces())
{
label curBPatch =
mesh_.boundaryMesh().whichPatch(curF);
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
fvsPatchField<Type>::New
(
mesh_.boundary()[curBPatch].type(),
mesh_.boundary()[curBPatch],
DimensionedField<Type, surfaceMesh>
::null()
)
);
}
// add the face
label curPatchFace =
mesh_.boundaryMesh()
[curBPatch].whichFace(curF);
patchFields[curBPatch][curPatchFace] =
curProcPatch[faceI];
}
else
{
// Internal face
internalField[curF] = curProcPatch[faceI];
}
}
}
}
}
}
forAll (mesh_.boundary(), patchI)
{
// add empty patches
if
(
isType<emptyFvPatch>(mesh_.boundary()[patchI])
&& !patchFields(patchI)
)
{
patchFields.set
(
patchI,
fvsPatchField<Type>::New
(
emptyFvsPatchField<Type>::typeName,
mesh_.boundary()[patchI],
DimensionedField<Type, surfaceMesh>::null()
)
);
}
}
// Now construct and write the field
// setting the internalField and patchFields
return tmp<GeometricField<Type, fvsPatchField, surfaceMesh> >
(
new GeometricField<Type, fvsPatchField, surfaceMesh>
(
IOobject
(
fieldIoObject.name(),
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
procFields[0].dimensions(),
internalField,
patchFields
)
);
}
// Reconstruct and write all/selected volume fields
template<class Type>
void Foam::fvFieldReconstructor::reconstructFvVolumeFields
(
const IOobjectList& objects,
const HashSet<word>& selectedFields
)
{
const word& fieldClassName =
GeometricField<Type, fvPatchField, volMesh>::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
forAllConstIter(IOobjectList, fields, fieldIter)
{
if
(
!selectedFields.size()
|| selectedFields.found(fieldIter()->name())
)
{
Info<< " " << fieldIter()->name() << endl;
reconstructFvVolumeField<Type>(*fieldIter())().write();
}
}
Info<< endl;
}
}
// Reconstruct and write all/selected surface fields
template<class Type>
void Foam::fvFieldReconstructor::reconstructFvSurfaceFields
(
const IOobjectList& objects,
const HashSet<word>& selectedFields
)
{
const word& fieldClassName =
GeometricField<Type, fvsPatchField, surfaceMesh>::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
forAllConstIter(IOobjectList, fields, fieldIter)
{
if
(
!selectedFields.size()
|| selectedFields.found(fieldIter()->name())
)
{
Info<< " " << fieldIter()->name() << endl;
reconstructFvSurfaceField<Type>(*fieldIter())().write();
}
}
Info<< endl;
}
}
// ************************************************************************* //