This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/parallelProcessing/decomposePar/pointFieldDecomposer.C

134 lines
4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "pointFieldDecomposer.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
pointFieldDecomposer::patchFieldDecomposer::patchFieldDecomposer
(
const pointPatch& completeMeshPatch,
const pointPatch& procMeshPatch,
const labelList& directAddr
)
:
PointPatchFieldMapperPatchRef<pointPatch>
(
completeMeshPatch,
procMeshPatch
),
sizeBeforeMapping_(completeMeshPatch.size()),
directAddressing_(procMeshPatch.size(), -1)
{
// Create the inverse-addressing of the patch point labels.
labelList pointMap(completeMeshPatch.boundaryMesh().mesh().size(), -1);
const labelList& completeMeshPatchPoints = completeMeshPatch.meshPoints();
forAll (completeMeshPatchPoints, pointi)
{
pointMap[completeMeshPatchPoints[pointi]] = pointi;
}
// Use the inverse point addressing to create the addressing table for this
// patch
const labelList& procMeshPatchPoints = procMeshPatch.meshPoints();
forAll (procMeshPatchPoints, pointi)
{
directAddressing_[pointi] =
pointMap[directAddr[procMeshPatchPoints[pointi]]];
}
// Check that all the patch point addresses are set
if (directAddressing_.size() && min(directAddressing_) < 0)
{
FatalErrorIn
(
"pointFieldDecomposer::patchFieldDecomposer()"
) << "Incomplete patch point addressing"
<< abort(FatalError);
}
}
pointFieldDecomposer::pointFieldDecomposer
(
const pointMesh& completeMesh,
const pointMesh& procMesh,
const labelList& pointAddressing,
const labelList& boundaryAddressing
)
:
completeMesh_(completeMesh),
procMesh_(procMesh),
pointAddressing_(pointAddressing),
boundaryAddressing_(boundaryAddressing),
patchFieldDecomposerPtrs_
(
procMesh_.boundary().size(),
static_cast<patchFieldDecomposer*>(NULL)
)
{
forAll (boundaryAddressing_, patchi)
{
if (boundaryAddressing_[patchi] >= 0)
{
patchFieldDecomposerPtrs_[patchi] = new patchFieldDecomposer
(
completeMesh_.boundary()[boundaryAddressing_[patchi]],
procMesh_.boundary()[patchi],
pointAddressing_
);
}
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
pointFieldDecomposer::~pointFieldDecomposer()
{
forAll (patchFieldDecomposerPtrs_, patchi)
{
if (patchFieldDecomposerPtrs_[patchi])
{
delete patchFieldDecomposerPtrs_[patchi];
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //