This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/combustion/dieselFoam/dieselFoam.C
2010-08-26 15:22:03 +01:00

135 lines
3.7 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
dieselFoam
Description
Solver for diesel spray and combustion.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "hCombustionThermo.H"
#include "turbulenceModel.H"
#include "spray.H"
#include "psiChemistryModel.H"
#include "chemistrySolver.H"
#include "multivariateScheme.H"
#include "IFstream.H"
#include "OFstream.H"
#include "Switch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readGravitationalAcceleration.H"
# include "readCombustionProperties.H"
# include "createSpray.H"
# include "initContinuityErrs.H"
# include "readTimeControls.H"
# include "compressibleCourantNo.H"
# include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readPISOControls.H"
# include "compressibleCourantNo.H"
# include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
Info << "Evolving Spray" << endl;
dieselSpray.evolve();
Info << "Solving chemistry" << endl;
chemistry.solve
(
runTime.value() - runTime.deltaT().value(),
runTime.deltaT().value()
);
// turbulent time scale
{
volScalarField tk =
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon());
volScalarField tc = chemistry.tc();
// Chalmers PaSR model
kappa = (runTime.deltaT() + tc)/(runTime.deltaT()+tc+tk);
}
chemistrySh = kappa*chemistry.Sh()();
# include "rhoEqn.H"
# include "UEqn.H"
for (label ocorr=1; ocorr <= nOuterCorr; ocorr++)
{
# include "YEqn.H"
# include "hsEqn.H"
// --- PISO loop
for (int corr=1; corr<=nCorr; corr++)
{
# include "pEqn.H"
}
}
turbulence->correct();
# include "spraySummary.H"
rho = thermo.rho();
if (runTime.write())
{
chemistry.dQ()().write();
}
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //