This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/mesh/generation/blockMesh/curvedEdges/BSpline.C

158 lines
4.1 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
BSpline : cubic spline going through all the knots
\*---------------------------------------------------------------------------*/
#include "error.H"
#include "BSpline.H"
#include "simpleMatrix.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
pointField BSpline::findKnots
(
const pointField& allknots,
const vector& fstend,
const vector& sndend
)
{
label newnKnots(allknots.size() + 2);
label NKnots(allknots.size());
pointField newknots(newnKnots);
// set up 1/6 and 2/3 which are the matrix elements throughout most
// of the matrix
register scalar oneSixth = 1.0/6.0;
register scalar twoThird = 2.0/3.0;
simpleMatrix<vector> M(newnKnots);
// set up the matrix
M[0][0] = -0.5*scalar(NKnots - 1);
M[0][2] = 0.5*scalar(NKnots - 1);
for (register label i=1; i<newnKnots-1; i++)
{
M[i][i-1] = oneSixth;
M[i][i] = twoThird;
M[i][i+1] = oneSixth;
}
M[newnKnots - 1][newnKnots - 3] = -0.5*scalar(NKnots - 1);
M[newnKnots - 1][newnKnots - 1] = 0.5*scalar(NKnots - 1);
// set up the vector
for (label i=1; i<=NKnots; i++)
{
M.source()[i] = allknots[i-1];
}
// set the gradients at the two ends
if (mag(fstend)<1e-8)
{
// set to the default : forward differences on the end knots
M.source()[0] = allknots[1] - allknots[0];
M.source()[0] /= mag(M.source()[0]);
M.source()[NKnots+1] = M.source()[NKnots-1] - M.source()[NKnots];
M.source()[NKnots+1] /= mag(M.source()[NKnots+1]);
}
else
{
// set to the gradient vectors provided
M.source()[0] = fstend/mag(fstend);
M.source()[NKnots+1] = sndend/mag(sndend);
}
// invert the equation to find the control knots
newknots = M.solve();
return newknots;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from components
BSpline::BSpline(const pointField& Knots)
:
spline(findKnots(Knots))
{}
// Construct from components
BSpline::BSpline
(
const pointField& Knots,
const vector& fstend,
const vector& sndend
)
:
spline(findKnots(Knots, fstend, sndend))
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
//- Return the real position of a point on the curve given by
// the parameter 0 <= lambda <= 1
vector BSpline::realPosition(scalar mu)
{
return spline::position(mu);
}
//- Return the position of a point on the curve given by
// the parameter 0 <= lambda <= 1
vector BSpline::position(const scalar mu) const
{
return spline::position((1.0/(nKnots() - 1))*(1.0 + mu*(nKnots() - 3)));
}
//- Return the length of the curve
scalar BSpline::length() const
{
notImplemented("BSpline::length() const");
return 1.0;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //