This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/utilities/patchStressIntegrate/patchStressIntegrate.C

228 lines
8.1 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.1
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Description
Calculates the total forces on a patch:
total force vector
total normal force
total force in each direction (x, y and z)
Author
philip.cardiff@ucd.ie
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::validArgs.append("patch name");
argList::validOptions.insert("noMeshUpdate", "");
argList::validOptions.insert("nonLinear", "");
# include "addTimeOptions.H"
# include "setRootCase.H"
# include "createTime.H"
// Get times list
instantList Times = runTime.times();
// set startTime and endTime depending on -time and -latestTime options
# include "checkTimeOptions.H"
runTime.setTime(Times[startTime], startTime);
# include "createMesh.H"
bool noMeshUpdate = args.optionFound("noMeshUpdate");
bool nonLinear = args.optionFound("nonLinear");
word patchName(args.additionalArgs()[0]);
label patchID = mesh.boundaryMesh().findPatchID(patchName);
if (patchID == -1)
{
FatalError << "Cannot find patch " << patchName
<< exit(FatalError);
}
for (label i=startTime; i<endTime; i++)
{
runTime.setTime(Times[i], i);
Info<< "Time = " << runTime.timeName() << endl;
if (!noMeshUpdate)
{
mesh.readUpdate();
}
IOobject sigmaheader
(
"sigma",
runTime.timeName(),
mesh,
IOobject::MUST_READ
);
// Check sigma exists
if (sigmaheader.headerOk())
{
Info<< "\tReading sigma" << endl;
volSymmTensorField sigma(sigmaheader, mesh);
Info<< nl;
// gradU needed for nonLinear
volTensorField* gradUPtr = nullptr;
volSymmTensorField* sigmaCauchyPtr = nullptr;
if (nonLinear)
{
gradUPtr = new volTensorField
(
IOobject
(
"grad(U)",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
sigmaCauchyPtr = new volSymmTensorField
(
IOobject
(
"sigmaCauchy",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
}
//vector netForce = vector::zero;
//vector netForceCauchy = vector::zero;
//scalar maxPatchForce = 0.0;
//forAll(mesh.boundary(), patchID)
{
vectorField n = mesh.boundary()[patchID].nf();
const vectorField& Sf = mesh.boundary()[patchID].Sf();
const symmTensorField& sigmaPatch =
sigma.boundaryField()[patchID];
vectorField totalForce(sigmaPatch.size(), vector::zero);
scalar totalNormalForce = 0.0;
vector totalShearForce = vector::zero;
vectorField totalForceCauchy(sigmaPatch.size(), vector::zero);
scalar totalNormalForceCauchy = 0.0;
vector totalShearForceCauchy = vector::zero;
if (nonLinear)
{
// Note: only for TL models, not correct for UL
// models yet - todo
// We use two separate methods to calculate the force
// for the nonlinear models
// both methods should be equivalent
// they are both used just to check everything is as it
// should be
// Force == currentAreas & sigmaCauchy ==
// referenceArea & sigma2PK & deformationGradient
// deformation gradient
tensorField F = I + gradUPtr->boundaryField()[patchID];
const scalarField J = det(F);
const tensorField Finv = hinv(F);
// current deformed patch area vectors are given by
// Nanson's formula
const vectorField deformedSf = J * Finv & Sf;
const vectorField deformedN = deformedSf/mag(deformedSf);
const symmTensorField& sigmaCauchyPatch =
sigmaCauchyPtr->boundaryField()[patchID];
// reference areas and 2nd Piola-Kirchhoff stress
totalForce = Sf & (sigmaPatch & F);
totalNormalForce = sum(deformedN & (totalForce));
totalShearForce = sum((I -sqr(deformedN)) & (totalForce));
// deformed normals and Cauchy stress
totalForceCauchy = deformedSf & (sigmaCauchyPatch);
totalNormalForceCauchy = sum(deformedN & (totalForceCauchy));
totalShearForceCauchy =
sum((I -sqr(deformedN)) & (totalForceCauchy));
//netForceCauchy += sum(totalForceCauchy);
}
else
{
// small strain
totalForce = Sf & sigmaPatch;
totalNormalForce = sum(n & (totalForce));
totalShearForce = sum((I -sqr(n)) & (totalForce));
}
//netForce += sum(totalForce);
// scalar totalNormalForce = sum(n & (totalForce));
// vector totalShearForce = sum((I -sqr(n)) & (totalForce));
//maxPatchForce = max(maxPatchForce, mag(sum(totalForce)));
Info<< "Patch: " << mesh.boundary()[patchID].name() << nl
<< "\tTotal Force:\t\t" << sum(totalForce) << " N\n"
<< "\tTotal Normal Force:\t" << totalNormalForce << " N\n"
<< "\tTotal Shear Force:\t" << totalShearForce << " N\n";
if (nonLinear)
{
Info<< "\tForces calculated with Cauchy stress\n"
<< "\tTotal Force:\t\t" << sum(totalForceCauchy) << " N\n"
<< "\tTotal Normal Force:\t" << totalNormalForceCauchy
<< " N\n"
<< "\tTotal Shear Force:\t" << totalShearForceCauchy
<< " N\n";
}
Info<< endl;
}
// scalar percentNetForce = 100.0*mag(netForce)/maxPatchForce;
// scalar percentNetForceCauchy =
// 100.0*mag(netForceCauchy)/maxPatchForce;
// Info<< nl << "Net force on model is "
// << netForce << " N\twhich is "
// << percentNetForce << "% of maximum patch force";
Info<< endl;
}
}
Info<< nl << "End" << endl;
return 0;
}
// ************************************************************************* //