This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/coupled/blockCoupledScalarTransportFoam/blockCoupledScalarTransportFoam.C
2012-01-29 12:01:07 +00:00

185 lines
6 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
blockCoupledScalarTransportFoam
Description
Solves two coupled transport equations in a block-coupled manner
1) transport equation for a passive scalar
2) diffusion only
This resembles heat exchanging flow through a porous medium
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "fieldTypes.H"
#include "Time.H"
#include "fvMesh.H"
#include "blockLduSolvers.H"
#include "VectorNFieldTypes.H"
#include "volVectorNFields.H"
#include "blockVectorNMatrices.H"
#include "blockMatrixTools.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating scalar transport\n" << endl;
# include "CourantNo.H"
for (runTime++; !runTime.end(); runTime++)
{
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSIMPLEControls.H"
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix TEqn
(
fvm::div(phi, T)
- fvm::laplacian(DT, T)
==
alpha*Ts
- fvm::Sp(alpha, T)
);
TEqn.relax();
fvScalarMatrix TsEqn
(
- fvm::laplacian(DTs, Ts)
==
alpha*T
- fvm::Sp(alpha, Ts)
);
TsEqn.relax();
// Prepare block system
BlockLduMatrix<vector2> blockM(mesh);
// Grab block diagonal and set it to zero
Field<tensor2>& d = blockM.diag().asSquare();
d = tensor2::zero;
// Grab linear off-diagonal and set it to zero
Field<vector2>& u = blockM.upper().asLinear();
Field<vector2>& l = blockM.lower().asLinear();
u = vector2::zero;
l = vector2::zero;
vector2Field& blockX = blockT.internalField();
// vector2Field blockX(mesh.nCells(), vector2::zero);
vector2Field blockB(mesh.nCells(), vector2::zero);
//- Inset equations into block Matrix
blockMatrixTools::insertEquation(0, TEqn, blockM, blockX, blockB);
blockMatrixTools::insertEquation(1, TsEqn, blockM, blockX, blockB);
//- Add off-diagonal terms and remove from Block source
forAll(d, i)
{
d[i](0,1) = -alpha.value()*mesh.V()[i];
d[i](1,0) = -alpha.value()*mesh.V()[i];
blockB[i][0] -= alpha.value()*blockX[i][1]*mesh.V()[i];
blockB[i][1] -= alpha.value()*blockX[i][0]*mesh.V()[i];
}
//- Transfer the coupled interface list for processor/cyclic/etc.
// boundaries
blockM.interfaces() = blockT.boundaryField().blockInterfaces();
//- Transfer the coupled interface coefficients
forAll(mesh.boundaryMesh(), patchI)
{
if (blockM.interfaces().set(patchI))
{
Field<vector2>& coupledLower =
blockM.coupleLower()[patchI].asLinear();
Field<vector2>& coupledUpper =
blockM.coupleUpper()[patchI].asLinear();
const scalarField& TLower = TEqn.internalCoeffs()[patchI];
const scalarField& TUpper = TEqn.boundaryCoeffs()[patchI];
const scalarField& TsLower =
TsEqn.internalCoeffs()[patchI];
const scalarField& TsUpper =
TsEqn.boundaryCoeffs()[patchI];
blockMatrixTools::blockInsert(0, TLower, coupledLower);
blockMatrixTools::blockInsert(1, TsLower, coupledLower);
blockMatrixTools::blockInsert(0, TUpper, coupledUpper);
blockMatrixTools::blockInsert(1, TsUpper, coupledUpper);
}
}
//- Block coupled solver call
BlockSolverPerformance<vector2> solverPerf =
BlockLduSolver<vector2>::New
(
word("blockVar"),
blockM,
mesh.solutionDict().solver("blockVar")
)->solve(blockX, blockB);
solverPerf.print();
// Retrieve solution
blockMatrixTools::blockRetrieve(0, T.internalField(), blockX);
blockMatrixTools::blockRetrieve(1, Ts.internalField(), blockX);
T.correctBoundaryConditions();
Ts.correctBoundaryConditions();
}
runTime.write();
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //