This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/compressible/rhopSonicFoam/rhopSonicFoam.C
2013-12-11 16:09:41 +00:00

192 lines
5.7 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration |
\\ / A nd | For copyright notice see file Copyright
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
rhopSonicFoam
Description
Pressure-density-based compressible flow solver.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "weighted.H"
#include "gaussConvectionScheme.H"
#include "multivariateGaussConvectionScheme.H"
#include "MUSCL.H"
#include "LimitedScheme.H"
#include "boundaryTypes.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "readThermodynamicProperties.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
Info<< "Time = " << runTime.value() << nl << endl;
# include "readPISOControls.H"
scalar HbyAblend = readScalar(piso.lookup("HbyAblend"));
# include "readTimeControls.H"
scalar CoNum = max
(
mesh.surfaceInterpolation::deltaCoeffs()
*mag(phiv)/mesh.magSf()
).value()*runTime.deltaT().value();
Info<< "Max Courant Number = " << CoNum << endl;
# include "setDeltaT.H"
for (int outerCorr = 0; outerCorr < nOuterCorr; outerCorr++)
{
magRhoU = mag(rhoU);
H = (rhoE + p)/rho;
fv::multivariateGaussConvectionScheme<scalar> mvConvection
(
mesh,
fields,
phiv,
mesh.schemesDict().divScheme("div(phiv,rhoUH)")
);
solve
(
fvm::ddt(rho)
+ mvConvection.fvmDiv(phiv, rho)
);
surfaceScalarField rhoUWeights =
mvConvection.interpolationScheme()()(magRhoU)()
.weights(magRhoU);
weighted<vector> rhoUScheme(rhoUWeights);
fvVectorMatrix rhoUEqn
(
fvm::ddt(rhoU)
+ fv::gaussConvectionScheme<vector>(mesh, phiv, rhoUScheme)
.fvmDiv(phiv, rhoU)
);
solve(rhoUEqn == -fvc::grad(p));
solve
(
fvm::ddt(rhoE)
+ mvConvection.fvmDiv(phiv, rhoE)
==
- mvConvection.fvcDiv(phiv, p)
);
T = (rhoE - 0.5*rho*magSqr(rhoU/rho))/Cv/rho;
psi = 1.0/(R*T);
p = rho/psi;
for (int corr = 0; corr < nCorr; corr++)
{
volScalarField rrhoUA = 1.0/rhoUEqn.A();
surfaceScalarField rrhoUAf("rrhoUAf", fvc::interpolate(rrhoUA));
volVectorField HbyA = rrhoUA*rhoUEqn.H();
surfaceScalarField HbyAWeights =
HbyAblend*mesh.weights()
+ (1.0 - HbyAblend)*
LimitedScheme
<vector, MUSCLLimiter<NVDTVD>, limitFuncs::magSqr>
(mesh, phi, IStringStream("HbyA")()).weights(HbyA);
phi =
(
surfaceInterpolationScheme<vector>::interpolate
(HbyA, HbyAWeights) & mesh.Sf()
)
+ HbyAblend*fvc::ddtPhiCorr(rrhoUA, rho, rhoU, phi);
p.boundaryField().updateCoeffs();
surfaceScalarField phiGradp =
rrhoUAf*mesh.magSf()*fvc::snGrad(p);
phi -= phiGradp;
# include "resetPhiPatches.H"
surfaceScalarField rhof =
mvConvection.interpolationScheme()()(rho)()
.interpolate(rho);
phiv = phi/rhof;
fvScalarMatrix pEqn
(
fvm::ddt(psi, p)
+ mvConvection.fvcDiv(phiv, rho)
+ fvc::div(phiGradp)
- fvm::laplacian(rrhoUAf, p)
);
pEqn.solve();
phi += phiGradp + pEqn.flux();
rho = psi*p;
rhof =
mvConvection.interpolationScheme()()(rho)()
.interpolate(rho);
phiv = phi/rhof;
rhoU = HbyA - rrhoUA*fvc::grad(p);
rhoU.correctBoundaryConditions();
}
}
U = rhoU/rho;
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //