This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/stressAnalysis/solidDisplacementFoam/solidDisplacementFoam.C

139 lines
4.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
solidDisplacementFoam
Description
Transient segregated finite-volume solver of linear-elastic,
small-strain deformation of a solid body, with optional thermal
diffusion and thermal stresses.
Simple linear elasticity structural analysis code.
Solves for the displacement vector field D, also generating the
stress tensor field sigma.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "Switch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "readMechanicalProperties.H"
# include "readThermalProperties.H"
# include "readSolidDisplacementFoamControls.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating displacement field\n" << endl;
for (runTime++; !runTime.end(); runTime++)
{
Info<< "Iteration: " << runTime.value() << nl << endl;
# include "readSolidDisplacementFoamControls.H"
int iCorr = 0;
scalar initialResidual = 0;
do
{
if (thermalStress)
{
volScalarField& T = Tptr();
solve
(
fvm::ddt(T) == fvm::laplacian(DT, T)
);
}
{
fvVectorMatrix DEqn
(
fvm::d2dt2(D)
==
fvm::laplacian(2*mu + lambda, D, "laplacian(DD,D)")
+ divSigmaExp
);
if (thermalStress)
{
const volScalarField& T = Tptr();
DEqn += fvc::grad(threeKalpha*T);
}
//DEqn.setComponentReference(1, 0, vector::X, 0);
//DEqn.setComponentReference(1, 0, vector::Z, 0);
initialResidual = DEqn.solve().initialResidual();
if (!compactNormalStress)
{
divSigmaExp = fvc::div(DEqn.flux());
}
}
{
volTensorField gradD = fvc::grad(D);
sigmaD = mu*twoSymm(gradD) + (lambda*I)*tr(gradD);
if (compactNormalStress)
{
divSigmaExp = fvc::div
(
sigmaD - (2*mu + lambda)*gradD,
"div(sigmaD)"
);
}
else
{
divSigmaExp += fvc::div(sigmaD);
}
}
} while (initialResidual > convergenceTolerance && ++iCorr < nCorr);
# include "calculateStress.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //